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ELLIPTIC FUNCTIONS AND INTEGRALS WITH REAL
MODULUS IN FLUID MECHANICS®

By Robert Iegendre
SUMMARY

Advantage of the elliptlic functlons and of the more general functions
of Schwarz for fluld mechanies. Flows outside and inside polygons.
Applicetion to the calculation of an elbow diffuser for a wind tunnel.
Properties of the elliptic integrals of the first kind and of the elliptie
functions. Properties of the theta functions and decomposition of the
elliptiec functions into products of theta functions. Properties of the
zeta functions. Decomposition of the elliptic functions into sums of
zeta functions and calculation of the elliptic integrals. Applications
to the calculation of wing profiles, of compressor profiles, and to the
study of the vibrations of alrplane wings and of compressor vanes.

The manuscript of the present paper was checked by Mr. Eichelbrenner
who corrected several imperfections and suggested numerous improvements
to make reading of the paper easier. However,:-the limited subject does
not permit £illing In more than an incomplete knowledge of the properties
- of anelytic functions.

INTRODUCTION

The solutions of a very large.number of problems in fluid mechanics
are expressed with the aid of elliptic functions. The mechanism of the
role of these functions 1s not difficult to analyze.

From one point of view, the elliptic functions can be considered as
the simplest ones (after the exponential and circular ones which they
generalize) among the solutions of differential equations whose coeffi-
clents are polynomials. Thus, 1t is natural that one must resort to
elliptic functions when a somewhat close approximation is desired.

From another more geometrical view point, the majority of the prob-
lems which can be solved with the aid of exponential and circular func-
tlons are relsted to schemes which assemble the glven quantities on a

*1es Fonctions et Intégrales Elliptiques a Module Réel en Mécanigue
des Fluides," ONERA, Publication No. T1l, 1954.
NACA Reviewer's note: The original French publication contains cer-

taln typographlcal errors and obvious omissions in equetions that have
been corrected without comment.
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unique segment or else on a unique curve or on & family of curves, deduced
one from another by a simple perlodicity. As soon as the given parameters
are on two separate cﬁrves or on a family of curves deduced one from
another by a double periodiecity, the elliptic functlons are introduced.

The elliptic functions are analytic functions, the field of which
represents directly the plane flow of an ideal incompressible fluid.
The conformal transformations ellow the association of the fields of flow
around very different obstacles. On the other hand, the study of the
flow of compressible fluilds is largely based upon the acquired knowledge
of analytic functions, at least as far as search for approximations by
various artifices 1s concerned.

Among these artifices one must mention the study of the hodograph,
that is, of the potential of the plane flow of a compressible fluld repre-
sented with the aid of the velocity. The relation between the potential
and the velocity 1s in fact much closer to the one expressed by an ana-
lytic function then the relation between the potential and the coordinsates
in the physicel plane. The theory of conilcal flows satisfying an equatlion
which is linearized by approximation, on the other hand, leads to the
study of the three-dimensional flow of a compressible fluid 1n terms of
the plane flow of an incompressible fluid. Finally, the projection of
the velocity of the almost uniform flow of a compressible fluid onto a
plane perpendiculer to the mean direction of this velocity 1s spproxi-
mately the velocity of the flow of an incompressible filuld. The nearer
the Mach number of the mean flow 1s to unity, the closer is the
approximetion. '

The theory of the elliptic funections is generally very little known
among engineers, not so much for want of mathematical treatises as because
of the lack of work establishing the conmection between these functions
and the flows which they can represent. One finds quite often a thoroughly
documented treatise which does not contaln a single figure.

The present paper uses largely the geometrical methods taught in
1930 at the Ecole d'Application du Génle Maritime by the Institute mem-
ber, Mr. Emile Barrillon. It does not attempt the rigorousness to be found
in the mathemstical treatments but the intuitive and quick solution of
the problems. The general theorems relstive to the analytic functions
permit a justification of the exactness and uniqueness of the solutions
found. -

Although the paper beldngg in the domaiﬁ_bf-applied methematics, it
establishes some properties of the elliptic: functilons which are, to our
knowledge, original.’ o ' .

=
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1. SCHWARZ' TRANSFORMATION

1.0 Flow Outside or Inside a Polygon

The leter developments will show that the elliptic functions with
real modulus and the integrals which can be asttached to them represent
flows outside and inside quadrirectangular polygons. They generalize
the cilreulsr functions which are associated with flows limited by
birectanguler polygone and are themselves perticular cases of the Schwarz
functions defining the flowe outslde or imnside arbiltrary polygons.
Finally, Schwarz' functions are the simplest of the automorphic (or
Fuchsian) functions of Poincaré.

Without aspiring to such large generallzations for the limited sub-
ject of the present paper, although the geometrical methods are of a
charscter to facilitate the understanding and to generalize the applica-
tion of Poincard's functions, it is useful to assoclate the elliptic
functions with real modulus to the functions of Schwarz.

Iet us recall the principal properties of the analytic functions
which will be useful later on.

An analytic function is associated with a representative field
constituted by a net of two families of orthogonal curves forming &
grid. Each curve corresponds to a constant value of the real part or
of the imsginary part of the function. For the interpretation in terms
of fluid mechanics, one of the families corresponds to the eguilpotentials,
and the other to the stream lines.

An anslytic function of a varilable, which ltself is an analytic
function of a second varlable, is an analytic functlon of the second
varisble. Its representative field in the plane of the second variable
may be constructed by a point-by-point conformal correspondence, that
is, locally conserving the angles and the ratios of the lengths except
of the second order. An analytic function such as the one above which
defines the correspondence bétween the two variables is thus assoclated
with e conformel geometrical transformation.

An enslytic function defined in the entire plane of a variable dif-
fers only by a constant from the sum of its principal parts in the
neighborhood of all its singulsr points. If an analytic function is
defined in a limited region of the plane, but if 1t is real or has a con=-
stant imaglnary part on the contour of this region, and if 1t 1s possible
to make this reglon correspond, by conformael transformation, to & half
plane or to the interior of a circle in such a manner that the function
can be defined by analytic continustion in the entire plane of the new
variable, it differs only by a constant from the sum of its principal
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parts in the neighborhoocd of all its singilarities and from the-singa-
larities of the analytlc continuation in the entire plane of the new.
variable.

1.1 Hodograph of the Flow Outside or Inside a Polygon

In accordance with the foregolng review, it suffices to characterize
one flow defining a conformal transformation of the polygon into a cirele
or into a straight line in order to determine all flows containing doublets,
gources, slnks, or vortices in limited number or dlstributed on the curves
in infinite number. These flows will, in fact, be associated with an
analytic functlon, determined except for one constant for these enumerated
singularities and their imesges, by Inversion with respect to the circle
or by symmetry with respect to the straight line.

For reasons of symmetry, the retained fundamental flow will be that
of a circulation around the polygon or that of an lsolated vortex inside
the polygon. _

Iet u be the complex variasble in the plane of the polygon and
x(u) ' the complex potential of the flow whose real part 1s the potential
of the velocities, while a streamline corresponds to a constant value of
the imaginsry part. We can select X real on the contour of the polygon
(figs. 1 and 2). '

The veloclty has a constent direction on évery side of the polygon.
This property may be easily characterized by use of the hodograph, that
is to say, of the velocity or also of 1ts inverse, studied as a function
of X -

Q. el o

where p 1is the inverse of the intensity of the velocity, and 6 +the
angle of 1lnclination of the velocity, constant on one side of the polygon.

Even more convenilent wiil be the study of the logerithmic hodograph

Inf = Inp + 18

the imeginary part of which is a constent on one side of the polygon cor-
résponding, in additlion, to the real axis of the X~ plane or to the circle

of radiuve 1 in the plane of the variable 2z = eix. The_variaeble z will

always be agsociated with the function X 1n the following calculations,

Comparison of the figures 1 or 2 with figure 1(a) shows, in fact, that the
conformal transformation u(z) defined implicitly for X(u) and X(z)
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makes the exterlor or interior of a polygon correspond to the interior
of s circle. Ancther transformstion wu(t), defined further on, will mske
the exterior or interior of a polygon correspond to a half plane.

l.2 General Solution
Let us choose to study 1In{ as s function of z = elX, The vertices
of the polygon correspond to the unknown points of the unit circle
ZysZpe =« esZpe o e3Zp; which are singuler points of the function wu(z).

No other singuler point exists, except perheps at the origin, center of
the clrcle, which we agree to make correspond to the polnt at infinity
of the field outside the polygon or to the point of reference of the
field inside the polygon since the desired circulation has no other
singuler polnt outside the polygon but the point at infinity in the case
of external flow, and the center of the chosen vortex in the case of
internal flow.

The constancy of the imsginery part of 1n{ on the unit cirecle in
the plane of the variable 2z opermits defining the analytic continuation
of the function toward the outside of the circle. It is sufficient to
meke correspond to 2z and 1nf, for an internal point, the relation
between 1/Z and 1nf + C'® defining an enslytic function at the exter-
nal point which is the inverse of the first with respect to the circle.
The two functions Join on the clrcle where 2z = l/E and

Inf = 1np - 10

It suffices to adopt as constant 216, that 1s to say, the angle of
inclination of the side of the polygon multiplied by 21, arranging cuts
between the singular points and, for instance, the small-straight lines
extending the radii (fig. 3).

The mode of analytic continuation shows that there exists no singu-
lar point outside the circle, except perhaps st infinity. All singuler
points are thus known and the function mey be defined by the sum of its

singularities.

In the proximity of a vertex wu, of the polygon, the function X(u)

behaves like x

)EE+...

X =% + Cy(u - uy

where Gk 1s the sngle at the vertex measured toward the fluid.
Consequently,
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u-uk=02(X-Xk) + e e e
o %1
u }
;-_-a.}.c_=05(x-xk) oo
Since 2z(X) = el* is regular at a vertex 2y = eixk,
Sy

§=C)+(z-zk)“ +"...

Inf = (-?Ek- - l)log(z - zk) + . .

At infinity, for the flow outside a polygon, and &round the selected
vortex for the flow inside a polygon, the function X(u) Tbehaves like a
logarithm

X=%tilnu+ ..

The plus sign corresponds to a flow outside a poligon and the minus
sign to a flow inside one. .

Fix

dx + . o« « = tle + 4 e

= == = %

du

wej
ales

1n§=tix+o-u='|-':|—nz

It 1s not necessary to study the infinity of the z;plane where the
singularity is determined by the analytic continuation

Finaelly, 1ln{ is defined by the sum of 1ts singularities

o
In ¢ = tln z + z:(;tl‘- - l)ln(z = zi) + C*°

If one notes that the sum of the deviations of the- stream on the _
contour of the polygon is four right angles, then

8,
23 - ) -

Ll
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where the plus sign corresponds to the flow outside a polygon. Con-
sequently, the function 1n{ behaves, for an infinite 2z, like Tlnz.
On the other hand

ix 1% == X=X

zZ -2, =¢€ - e = 2ie slin

and

int = 2@5 - )ln(sin f_%_ng) + gt

(_’,=%’£=C]I(sin)(—;—)<5)JT -
u = Cfr.[(sin -X—;—yk)%k—-l ax

The flow outside or inside a regular polygon with n sides corre-
sponds to real values X, of X stepped at En/n and to values of &

exactly equal to =x % 2n/n. The plus sign corresponds to the external
flow. .
1.3 Extension to More Complex Polygons

The formule established above for values of & between O and 2x
can be generalized.

A zero value of &, corresponds to a polygon vertex at Iinfinity
between two parallel sides (fig. 5).

A value of €, equal to 2rx corresponds to a point of return
(fig. 6). '

A negative value of @, corresponds to two infinite branches
inclined by -8 (fig. T).

A value of Gk higher than 2nx corresponds to an overlapping
between the two adjoining sides (fig. 8).
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Finally, the formula ciefines a polygon,' for a rea._i X, 1if %Z(%k- - _'L)

is & positive or négative integer different from 1.

Even when all values of @ are contained between O and 2n, the
choice of the values of Xy for the representation of an a priorl given

polygon is difficult. It is generally expedient to resort to the elec-
trical analogy, and.the analytic expression is no longer applicable except
to the exact numerical study in the neighborhood of the singularities.

When X varies from O to 2mx where m i1is the entire value of

L 2(95-- 1), the variable u resumes 1ts initilal value end the polygon

2 k1

closes. In fact, all cuts in the plane of the variable 2z may be chosen
outside the unit circle, and the integral of £dX on that circle is equal

to the integral around an Infinitely small circle. Since § 1is, except
for one factor, equivalent to 3z, the integral

is itself equivalent to 2z, except for one factor, and, since it 1s inde-
pendent of the integration contour, it is necessarily zero.

1.4 Change of Reference

For the flow inside a polygon and for the flow limifed by a polygon
having infinite branches, the vortex of reference was chosen arbitrarily.

If another field or reference X' 1is selected, it_ﬂéy be useful to
determine its relastion with the inltial reference X.

In the plane of the variable z = elX, the field X' is that of a
vortex inglde the unit clrcle. It is, except for one constant, defined
by this singularity situated at a point the complex varlsble of which

will be denoted by émfiB and by the image of the latter with respect
to the circle,

It is convenlent to make a change of axes which mekes the symmetry

evident, taking ze™1P as the varisble. The new function X' then is

- -1
X' = -1 ln(ze'iB - e q) + 1 ln(ze B - ea) + B' - ia

vl
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The imaginary part of the constant -~-ic was chosen so that X!
should be real on the unit clrcle in the plane of =z, image of the con-
tour of the polygon.

If one sets z' = eix', the relation between z' and 1z is
homographic

(z'e'iﬁ') (ze'ia) - ea'(z';a-ia' + ze-iﬁ) +1=0

The relation between X' and X may be put in enother form, con-
venient for the real values

1 o t -
tanz(———B—tanX———B-+tanhg'-=O
2 2 2

This expression shows the advantage of the function

X -8B - 2= elP

t(u:B) = tan

z + elP

which 1s real on the contour of the polygon and depends on a real parem-
eter B. The above formula shows that t(z,B8) 1is represented in the
z-plene by a doublet on the circumference at the point z = -eiB, assuming
the unit circle as a streamline. The conformal transformation z(u) thus
makes the function t(u) correspond to t(z); this function t(u) is
represented in the field of the varisble u by a doublet on a side or at
a vertex of the polygon (fig. 10), according to whether the value chosen
for $ does not or does correspond to the vertex of the polygon in the
transformation z(u).

When no reason of symmetry makes 1t advisable to prefer the func-

tions X or =z = eix' for defining the conformal transformation of a
polygon into a circle, it is often convenient to utilize a transforma-
tion t(u,B) for a Judicious value of B which makes the real axis of
t correspond to the polygon, and one of the half-planes limited by the
real axis to the interior or to the exterior of the polygon. The trans-
formation +t(u,B) may be defined directly by

% _

_l_; l) X B ?}—{‘-_1
du _ 2 27\ k ~ T

where
e

B - X‘k)Tk-l

C5 = 2CIT <cos



10 | NACA T 1435

This expression is suitable only when the doublet of +t(z) has not
been chosen at a vertex of the polygon. If, on the contrary, B = Xi + =,

the expression meintains the same form but the term corresponding to’ X
must be omitted in each of the products.

a/2

The change of reference + = tanh T is perticularly convenient

wilth the latter expressions. It shows that %%T has the same form as

%%i which was obviously necessary.

For the flow inside a polygon, X (%i - l) = -2 and the term in

1+ t2 dlsappeers. In the other cases, the presence of this term indi-
cates the existence of a polnt at Infinity or of a critical point at the
center of the vortex X(u).

If all values of Oy are integer multiples of TII, the expression

%% is a rational fraction of + and the integral is expressed with the
ald of rationsl fractions and of logarithms, that is, of functions which

are the inverse of exponential or circular functions.

If one of the values of @8y 1s an odd multiple of n/2, there exists
at least one other value of @, of this type if all others are multiples

of IT, since the sum of the values- of By 1is a multible of 2r. The

polygon hes then two right angles and du/dt which is a square root of
a polynomial of the second degree, multiplied by a rational fraction in
t, 1s again integrated with the aid of rational functions and of exponen-

tial or circular functions., -

If three values of @, are odd multiples of /2, there exists a
fourth value of Qk of this type for all others to be multiples of =.

The polygon has then four right angles, and du/dt 1s the square root of
a8 polynomial of the fourth degree in +t, multiplied by e rational function.
The function u(t) 1s called an elliptic integral and its properties will
be studled in the following chapters. =

1.5 Field of Doublets or of Sources end Vortices in a Polygon

With the use of a conformal transformetion which makes & fraction of
the plane limited by & polygon correspond to the interior of a circle or
to a half plane, it is easy to study the field F(u) of doublets or of
sources and sinks limited by a polygon which is transformed into s field
defined in the entire plane by analytic continuation with the aid of Images
wilth respect to the cirecle or with respect to the real axis.
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We shall choose to utilize a transformation +(u) for studying the
field F(u) which is transformed into F(t) dJefined in the entire plane
by symmetry around the real axis of +t©.

The sum of the singularities of doublets, or of poles of a higher
order forms & ratlional fraction Fl(t) the analytic continuation of

which is Fl(t), obtained by replacing the coefficients by their con-
jugates. The field F(t) = Fy(t) + F1(t) 1s a rational fraction with

real coefficients. Inversely, such a rational fraction defines by =
transformstion t(u) a field of poles F(u) admitting a polygonal
streamline.

The singularities corresponding to sources, sinks, and vortices are
logarithms. The function F(u) becomes, sfter the transformation t(u)

F(t) = z[tx in(t - 43) + & In(t - Ej)] +cte

Inversely, an expression of this form defines a field of vortex
sources which contains, except when X(A + A) 0, a source on the con=-
tour of the polygon, for infinite +t.

A frequently encountered particular case corresponds to the sources
and slnks, the strengths of which are equal or are in a simple fractional
reletionship. The function F(t) is then the logarithm of a rational
fraction.

The field of a line of sources or of vortices is defined by

F(t) = A A(s)In(t - tg)ds + ]éﬂ(s)ln(t - t5)ds

where A(s) 1is an arbitrary intensity distributed on the line C as a
function of a parameter s vwhich can be the curvilinear abscissa. The
intensity A(s)ds is real for sources and purely imaginary for vortices.

1.6 Analytic Continuastion, Periods, Case of Reduction

The analytic continuation of a real function (or one with a constant
imaginary part) on each of the sides of a polygon is obtained by successive
symmetries with respect to the sides. The continuation thus defined is
generally multiform and the procedure followed depends on the order of the
symmetries.

The continuation is periodical. Two successive symmetries, one with
respect to a side of the polygon, the other with respect to the homologue
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of another side in the first symmetry, are equivaleﬁt to the combination
of a translation and of a rotation by an angle double that of the two

sides. . o

If the syﬁmetries are cambined I1n such a manner thet the rotations
have as thelr sum & multiple of 2n wilthout the translatlon being zero,
the function F(u) admits this translation as the period.

Figure 11 1llustrates the construction of a perlod in the case of a
triangle.

The rotation after the sixth symmetry-is

20 -~ 28 - 2y = -2n

For the rectangles and the equilateral triangles, the symmetries
show the way, and the sense of description which 1s inverted after each
symmetry, is reproduced after rotation around a vertex. A function F(u),
which 1s real on the contour of the rectangle or of the triangle, 1s then
uniformly continued. For regular hexagons, the symmetries again show the
way but two turns must be descrilbed around a vertex in order to reproduce
the sense of description. We shsll find finally that the uniformity of
the function defined in the entire plane, combined with the double perio-
dicity, 1s characteristic of elliptic functions. -

The analytic continuation by symmetries permits utilizing, for the
study of a symmetrical flow in a polygon, the transformetion relative to
the half polygon limited by the axis of symmetry. In order to study, for
instance, the field F(u) of a doublet on the axls of symmetry of &
quadrilateral with a circulation such that the stagnation points are at
the vertices (fig. 12(a)), it will be convenient to utilize the trans-
formstion +t(u) relative to one of the triangles (fig. 12(b)) and con-
tinued anelytically in the other _ w

-

B.1 .1
o (s -2)" (£ + 1)

In the plane of the variable +t, the function F(t) has the appear-
ance represented by figure 12(c). The cuts will be eliminated by the
classical transformation 2t = s + 1/s and the function F(s), uniform
in the entire plane, will be defined by its singularities -

1w -1w
F(s) =.A—e.._.+iB Inls - eiw) +.ﬁ§___._..iB _]_n(s - e'iw)-].c
iw -1w . _ e -
8 -~ € s - € ’

The condition of separation of the stpe%@ at C in the F(u)-plane
imposes an infinite branch in the F(t)-plene and a stagnation point at
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the origin in the F(s)-plane, either with dF/ds being zero for s =0
or else B = -A cot w. The constents w, A, C, remaln arbitrary. The
first defines the position of the doublet in the F(u)-plene, the others
fix the scale and the origin of F. Finally, the field F(u) to be
studied is defined parametrically by F(s) calculated sbove and u(t)
defined by integration of du/dt whose variable t is itself a function
of s.

Another particuler case of reduction pertains to the flows limited
by an equilateral triangle which can be related to flows inside a particu-
lar rectangle, that is, as we shall see, to the elliptic functions and
integrals.

In fact, we shall study the field of a doublet at one of the vertlces
of the triangle, corresponding to a function t(u) defined by

SR

If we set
1-t2= y5

then

1
3 -z
& --50-9)

and y(u) defines, as the later chapters will show, an elliptic integral
with e real modulus.

In generel, numerous cases of reduction of the functions of Schwarz
exist which may be found by analytical or geometrical methods. The sub-
Ject of the present report is limited to the study of the reductions of
the elliptic functions and integrals with real modulus which will form
the subject of the following chapters.

1.7 Examples of Application

Assume that turning vanes for a right-angle elbow diffuser intended
for & wind tunnel have to be defined.

One intends to construct the vanes very simply by means of one metal
sheet reinforced with the aid of a second, soldered to the first (fig. 13).
For the setup of the calculation, the thickness of the sheets is neglected
and the regions of the tralling edge and the leading edge are assumed to be
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stralght. It is desired, moreover, to orient the leading edge so as to
avold its becoming bent.

Iet F(z) bve the complex potential of the flows (fig. 14). To
choose the distribution of velocitiles, it is convenient to construct the
inverse hodogreph -

t(e) = & . _

Iet us follow the streamline which divides at the leading edge
(figs. 14 and 15).

From B to C, the direction is constant and ¢§ varies on & radius OBC
inclined by €.

From C to D, the direction of { changes and its intensity increases.
Its extremity describes the curve CD. )

From D to E, the direction 1s again constant and §{ describes the
radius DE, inclined by g-+-e'.

The same reasoning applied to the upper surface of the vane fixes
as limits of the field F({) a curvilinear quadrilateral CDD!C', The
variation of the velocity will be quite continuous if logarithmic spirals
are chosen for the curves CD and C'D'. _

Let us now carry out the transformation In{. The curvilinear
quadrilateral 1s transformed into a parallelogrem (fig. 16(2)), which
itself corresponds to a circle or to a straight line by means of a Schwarz
trensformetion (fig. 16(b)}

' 1 . 1
d(ln;) +5 -E-
— = Co(sin x) 2 sin(X - X)
where the reel part 1s chosen for 0 < X< ¥X; and where C is a real

constant determined by the condition that the imaginary variation of .In{
between C and D is

ie%-k € + 60

» -%+8
1t2_+ €+ ¢ =0, cos 5/;1 [sin %] [sin(xl - X)]

1
-is
2 - ax
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In order to choose the value of XA corresponding tc the image of

the point at infinity upstream, one will meke X vary by imeginary values,
starting from an arbitrary real value X, such that 0< X2 < Xl

X -l+ k-5
A
ie = C, I'/;a [stnx] 2 [sin(xl - x)] 2«

stopping the integration at the value Xl =X, + 1, such that this equa-
tion is satisfied. Ome will operate in the same manner for defining Xg,

5

corresponding to the image at infinity downstream, sterting from a
value = + X5 such that O« X3-< Xl

X S -i-3
1e' = ¢, If ¢ [sinx] 2 [oin(x - x)] % ax
1'E+'X5

Practically, for sufficiently smell values of € and e!

z-° z+0
ing ~ Xy = Xp ~ le[sin X3] [sin(xl - Xz)]

L.s
ing ~ x5 = Xg~ L' [sin x5]2 [sin(xl - x5)]

It remains to define F(X), the field of the initial potential in

%+a

iX p
the plane of the variable X, or rather F(e ) in the plane of the
varisble eix. This field is determined by its singularities which are

i 1
source vortices in: e a and e XG as well as in thelr images with
respect to the unit circle in the plane of e+~ (fig. 17).

The strength of a sink is equal to the strength of a source, and
may be determined exactly by the condition that the imaginary part of F
varies by 1 from one vane to the next

i - -
oxF = (1 + 1 ten cx,)ln(eix - 712) -~ (1 +1tan B)ln(eix+ IX3 ”5) +

i ~iXz+ X -
(1 - i tan a,)ln(elx ~e n;) S (@ -tten g™+ e 1X5tn3)
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The constants ten o and tan B, put in this form-for facilitating
the ultimate notation, must be such that the complex variable z 1n the
plane of the physical varieble will be uniform. For this it 1s necessary
that the integral L/E dFF taken on the contour CDD'C' of the hodograph be
zero (fig. 15). Since the function F presents singularities only at A

and G inside the contour, the latter may be replaced by a loop enclosing
A and G (fig. 18). One will note that

= ¢ GF
£ aF = ¢ ax ax
where §{ and dF/dX are uniform functions of X inslide the contour.

The portions of the integration on the two branches of the loop con-
necting A and G thus compensate one another, and it suffices to evaluate

the residues at A and G. -

In the neighborhood of A

Jfg aF ~ p k/hdF ~ 1(1 + 1 tana)f,

since the first logarithm of the expression of F increases by 2xi for
a contour enclosing A, and the others are uniform. Likewise, in the
"neighborhood of G :

Jfg aF ~ Lo L/ndF ~ =1(1 +-1 ten B)tg

The complex variable 2z will be uniform if

1(1 + 1 tan a)fy - 1(1 +.1 tan p){g =0

1(a-p) co8 B _ &g -
e —_— =X
cos &y

For a deviation by & right angle, the argument of CG/CA is

o - B = % o S e

and

tan o = -cot B =
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The pitch of the vanes is the variation of L/E dF for a closed con-

tour surrounding A or G. This varlation has already been calculasted above:

_ 5.l Ca  _
1(1 + 1 tan a)f, = 1e*® —=2A- - i(gy + gG)

The numerical calculetion of the proflle, for a real X, offers no
difficulties. One must especially be careful to choose correctly the
arbitrary initial velues; the hodograph method prohibits fixing e priori
the geometrlical values in the physical plane. The angles € and €',
for instance, determine indirectly the ratio between the chord of the
profiles and the pltch of the vanes, for it 1s clear that with short
profiles considereble velocity differences between infinity upstream and
the leading edge, on one hand, between the trailing edge and infinity
downstream, on the other, must be accepted. In compensation, the given
conditions in the hodograph plane permlt lmposing on the velocity a quite
contlnuous variation favorable to & sound flow of the real f£luid.

There exlst methods of electrical anelogy more powerful and less
laboriocus for designing lattices of blades.

The example above is intended especially for illustrating a study
of analytic functions, performed in & mammer sulted to the needs of
engineers.

2. ELLIPTIC INTEGRALS CF THE FIRST KIND AND ELLTPTIC FUNCTIONS

2.0 Definition

The elliptic integral of the first kind with reasl modulus is defined

- [ ax
0

V(l - x2)(1 - k2x2)

by

The radicel 1s positlve for x = 0. The coefficient k 1is real and

smaller than one. Its square k2 is the modulus. The inverse function
1s denoted by

x = sn(u,k)

or, more simply, by sn u when k does not vary in the course of the
calculations. To this function are assoclated
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en u = Y1 - sn?u e e

X1
Xo =dn u = Vl - kesneu ~

where the radieals are positive for u = 0.

The inverse functions of cn u &and dn u mey be defined directly
by integrals '

4 = U/\xl . dxl
2 2 2, 2
1 ‘/Cl - xl')cl - k= + kx; )
X5 ax. -
u=_f >
1

\/(1 - x22) (—1 + k2 4+ x22)

They could therefore be lncluded in the definitlon of sn u 1if the
restrictions fixed for the cholce k were lifted; the modulus is only
under the restriction that it be real. It 1s more convenlent for what
follows to use the three functions for an equal value of k, smaller than
one.

The two functions .sn u and dn u are particular cases of the
functions t{u) defined in paragraph 1.4 and determine flows around
doublets in & rectangle. The function c¢n u likewlse deflnes a flow
containing doublets, but with exchange of output between the doublets. e
The three functions are represented by figure 19. The extension of
the fleld of cn u by symmetry around a vertical side would complete
the rectangle along which cn u is real but showing that this function
is not, like sn u and dn u, one of the functions t(u) defined in the
preceding chapter for an arbitrary polygon. Its fleld conteins two doub- . _
lets on the perimeter of the rectangle. : .

The analytic continuations of the functions sn u, cn u, dn u,
defined by symmetries around the sldes of the rectangles are uniform and
periodical. The same 1s true for any rational. function of the three func-
tions above which is called an elliptiec function with real moduwlus. Such
a function 1ls not generally real on the contour of a rectangle and does
no longer define a flow in a rectangle.

The derlvatives of the functions sn u, ecnu, d4dn u result immedi-
ately from their definitions
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a
E(snu) cnudnu .

-Q-(cn u) = -sn udn u
du

S (an u) = %%sn u cn u
du

In order to normalize the three functions as in the previous chapter
in linking them to the field of the vortex at the center of the rectangle,
it suffices to set

k =s8in @
_ sin X
X =8n 5in 6
X X
0 = ax =f ax
0 2 2 0 8 -X 8 +X 8+xw+X B+ =X
Jsvin B~ sin®X 2¢s'in > sin 5 sin > sin S

The expressions of dnu and cn u as functions of X are

dn u =-cos X

25 o 2
cnu=\I;Ln_® sineX
sin @

The derivative of X(u) is

d
E)_( =\gin2® - éin2X =sgin ®@cnu
u

The function X(u) is periodic except for & multiple of 2x which
depends on the chosen sections among the vortlices. Since the direction
of the vortices is reversed by symmetry, the periods are twice the sides
of the defining rectangle of X(u), for instance 4K and 4iK' where
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X =j@ __ax
0 Vsin2@ - sinex | . S
/2 x/2-8 a(% - )
K =f ax _ if (2
& {sin Y

- sin®x V ofx 2
1 S - 8i LS
“-sin (2 ) sin (2 )-

@ - (g - o

The function X(u) =admits, moreover, the period 2K + 2iK' since
two successive symmetries reestablish the direction of the vortices.

2.1 Logerithms of the Elliptic Functions

The logarithm of an elliptic function, multiplied by & complex coef-
flcient, is represented by the doubly pericdic field of source vortices
and of sink vortices, corresponding to the poles and to the zeros of the
elliptic function. The sum of such logarithms is of the same nature but,
1f the coefficients of the logarithms have no simple common measure, the
intensities of the sources and the cilrculations of the vortices are varied.

The logarithms of sn u, cn u, dn u define the flelds of figure 21
In snu =1In s8ln X - In sin © . -
_ 1 1
In cn u = 5 1n sin(@ - X)| + 5 1n sin(® + X)}| - 1n sin @

In dn u = 1ln cos X-

If the above fields are derived graphically, there corresponds to
each source or sink a doublet, and to each straight line on which a func-
tion has a constant imaginary part while "du" is real or purely imaginary,
corresponds & real or purely lmaginary value of the deflvative. -

This operation furnishes the fields of Ffigure 22

Fylin on ] = Apdnu

L e -2

d _ _einlg SR ucn u
gulln @ u] = -sin'e S
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The last field is that of the function sn u, except for one con-
stant and for one factor, for a ratlio of the periods twice that of the
original function. The conjugate fleld of the first, with, for instance,
iecnudn u/sn u, corresponds to the function dn u for a ratio of the
periods half that of the orlginal function, in addition, with a change
of origin. The later calculations will furnish more convenlent methods
for multiplying or dividing the ratio of the periods.

If the field of the logarithm of an elliptic function is that of
source vortices, the inverse does not hold true, as the later study will
show. Even in the case where the representation of a field of source
vortices is possible by the logarithm of an elliptic function, the finding
of this function 1s difficult. The following exemple which will soon be
useful shows the origin of the difficulty.

Let the function

cnu-cnu
F(u) = 1n L

CI].U.-CIIU.2

be selected for representing & source of the strength 2n at u = u;
feeding a sink, or a source of intensity -2r, at u = up.

The field of F(u) contains actuslly sources of all values of u
for which cn u =ecn Uy

u = uy

u = -u,
u=1u + 2K + 2iK'
u = -u; + 2K + 21K’

and et all points deviating from the preceding ones by multiples of 4K
and of 4iK'. It is sometimes possible to eliminate the parasitic singu-
larities Introduced in order to conserve only those whose representation
is desired.

A particuler case 1s that of a fleld of source vortices inside =
rectangle which has already been treated for an arbitrary polygon. The
logarithm then allows for & constant imaginsry part on the contour of

the rectangle and the transformetion =z = eix(u) leads, by anslytic con-
tinuation to the exterior of the circle of radius 1 in the z-plane, to a
field of source vortices defined in the entire plane.
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F_(u) =Z A, ln[z(u) - z(un)]

where : -

'z = dnu+ 31 sin® snu - -

If, in particular, the values of the coefficlents A, are real num- ~
bers, the function F is the logarithm of an elliptic functiom. -~

2.2 Change of Origin and Theorem of Addition

The problem of change of origin for an arbitrary elliptic functiomn
can be reduced to the problem of change of origin of the function X(u),
that is to say, to the definition of X(u + v) as a function of X(u),
since the elliptic functions are expressed as functions of XK.

The study may be carried out by conformal transformations, first for
a real v, then for a purely imsginary v, and finally for a combination.

It is more direct and more convenient to define thé function X(u +.v)
by 1ts singularities in the u-plene which are vortices with the circula-
tion *2r. The conjugate field iX(u + v) 1s that of sources of intensi-
ties *2x. - e

This 1s a case where it 1s poussible to combine the singularities of
elementary elliptic functions, and one finds

cn u - en(v - 1K'} en(u + iK') - cn(v + 2iK') + cte
ecnu - en{v + 1K') cn(u - iK') - en(v - 2iK')

2ix(u + v) = ln[:

The singularities of the second term are, in fact, partly those of
sources of intensity 2x at the following points, defined except for
multiples of 4K and of 4iK!

v - iX! -v + 1K' v + 1K' + 2K -v .- iK' + 2K

v + 1K! - + iK' v - 1K' + 2K -v - iK' + 2K
and partly those of sinks of intensity 2x at _

v + 1K' -v - iK' v - 1K' + 2K -v + 1K' + 2K

v - 1K' ~v - iK' v + iK' + 2K -v + 1K' + 2K

still except for multiples of 4K and of 4iK'.
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Some of these singularities compensate one another, whereas the
effects of the others are additive. The field of the second term is
definitely that of sources of intensity bkx at

-v + iK' -v - iK' + 2K

and of sinks of* intensity Uz at

-v - iK! -v + iK' + 2K
which are, of course, the singularities of 2ix(u + v).

If v and u tend successively towerd zero, the constant appesars
as zero.

It remains to link cn(u - iK') = -en(u + iK') to Xx(u), that is,
to treat the problem of change of origin initially posed in the parti-
cular case vwhere Vv = tiK'.

The function 1 en(u - iK') is real (fig. 24t) on the defining
rectangle of X(u). It suffices therefore to define it in the plane of

zZ = eix(u) where it 1s represented by doublets at +1 and -1

i i
1 en(u - 1iK') = - + C
( ) z + 1 z -1 l

-cot X(u) + Cp

The constant Co mey be specified by
u=K+ iK' where cnu=0 and X(u) =’—2‘-

It is zero

dn u

i enlu - iK') = -cot X(u) =-—22
sin ® sn u

The formule of the change of origin assumes, consequently, the form

2j_x(u_*_v)=lnesin8:snvcnu—:Ld.nvxsfl.nesnucnv-id.nu
sin®snvenu+idnv sinéeésnucnv+i1idnu

X(u + v) = arc tanjcn v tan X(u)] + arc tan[cn u tan X(v)]
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From this relationship result the classical addition formulas

snucnvdnv+senvenudnu

sn(u + v) =
' 1~ sin2® sn2u snav )
cn(u+v)=°nuch-Snudnusnvdnv
l- sin2® sn2u sn2v
LY
an(u + v) = dn u dn v - Sin29 snucnusnvenv

1 - sin®e sn2u snv

where the denomlinator i1s the sqguare of the common moduius of the four
terms which appear in the expression of 2iX{u + v).

If one has set v = u; and Vv + u = ~up, the funetions X(u), X(ui),
><(ug) play symmetrical roles for - . :

u + uy + uy = 0

It is easy to establish several symmetrical relatiéhs between the
three functions X, but these relations have the dlsadvantage of not
defining each of the functions from the two others in & uniform manner.

The addition formulas are velld for.any arbitrary u and v, but
for a reel u and a purely imeginary v, they reduce the calculation
of the X function regarding a complex varieble to the calculation of
this function for the real values and the purely imsginary values. It
is sufficient to change in the formulas v to ~iv.

More conveniently, one may note that the mode of definition of x
by a symmetrical vortex establishes the relation

It

x[€ + 1v, sin %g| =& + x[v - X', cos a]~

or simplifying the notation - - -

X(K+ iv) =L 4+ X' (v - K')

A

sin [X(K + iv)] _ cos [X' (v - K')] _ dn(v - K")
sin © - sin @. . sin ©

sn(K + 1v) =
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an(K + 1v) = cos [X(K + 1v)] = -sin[x' (v - K’ )] = -cos & sn(v - K')

2
Cn(K+ i‘v‘) = Jl—_ ﬂ_(_K_-I—_E_)_ = =] cot ® Cn(v - K‘)
sinae

It is then indicated to replace in the addition formules u by
u-XK, and v by =K - iv. The functions of wu + iv will thus be
expressed with the aid of functions of u - K and of v - K'; the addi-
tion formules, in their normal forms, permit transforming these functions.

The calculstion leads to the classical formulas

an X(u)

t
X(u + iv) = arc ta.nl: — ] + i arg tanh [en u tan X' (v)tan @]

1 1
sn(u+iv)=snudn v+icecnudnusn' venvwv

en'Sy + sinze sn2u sn'2v

cnuecn' v - 1snudnusn' vdn'v

cn'av + sin%® snzut sn'av

en(u + 1iv)

1 1 - t
d.n(u+1v)=dnucn vdn' v - i 8in®® sn u cn u sn' v

cn'ev + sin2@ snau sn'2v

Thus, it is sufficient to calculate X(u) from which the other
functions can be deduced, for the values of @ between O and =/2,
and the real values of u between O and K. However, the addition

formule establishes, moreover, for a change of origin by a fourth of
the real period

cos
dn - K = d K - 10 =
(u - ¥) = an(x - u) = 228

cos [)((K - u)] cos E((u)] = cos @

It suffices therefore to meke wuw vary from O +to K/2 where

dn%:dcose sn%:-—-l——— cn§=___ucos@
\Ecos% Ecos%
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We remark furthermore that j _ . -

tan [X(K - u)]
tan @

cn u =

and this formule permits calculation of cn u from X(K- u), known from
0 to K, wilthout use of a radical. -

o

The addition formula of X mey be written

x(u + v) = erc tan tan X(u)tan X(K - v) + are tan|tan x(v)tan X(K - u)
tan @ tan @

This expression explains why use of the symmetrical relatlonships
between the three functions X(u), X(-v), aad X(-u - v) is not very
convenient. The function X(u + v) is actually expressed with the ald
of four nonindependent functions.

One could set up a parallel argument regarding a change of origin
by a fourth of the imeginsry periocd -~ :

sin X{u + 1K'} sin X(u) = sin @

Another classical means for calculating cn u without using a
redical consists in setting -

= = 5inh ¥
cn u = cos @ Tan ©
xsnu:s:i_nq>=sj'nx

sin @

dn u = cos © cosh ¥ = co8 X

21cp_lncnu+:1.snu
cnu-=1s8snu

gin@ dn u + cn u
sin ®dnu ~cnu

2y = In

The fields of the functions o@(u) and ¥(u) are represented by
figure 25. The functions 1¢(u) and ¥(u)} have fields which present
the same singularities as 1nfsn u] and In[dn u] except for the ratio
of the periods and the origlin. This could. furnish a second meang for
doubling or dividing the ratilio of the periods by two.
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The derivatives of the functions ¢ and Vv are

do _

E-E—dnu
EE = -s5in @ sn u
du

The functions V¥, X, @ therefore integrate, except for one fac-
tor, the functions sn u, cn u, dn u.

Changes of origin permit integratlion of other simple elliptic func-
tions with the functions X, @, ¥ calculated for u + K; u + iK'}
u + iK + iK'.

2.3 Gauss and landen Transformations

The most direct and geometrically most significant method for
studying the doubling of the ratio of the periods coneists in the study
of the X(u) function.

Let us consider two functions X(u,k) and xléﬁjkl) of the same
origin (fig. 26).

The scale of wuy is chosen in such a menner that the real periods
of the two functions are the same in the u-plane

u
ol
The ratlos of the periods are
i ik

Ky 2 K
In the plane of the varisble =z = eix, the function X; 1is repre-

sented by two vortlces at gz, = eix(lg;) and -z4 1Iinside the unit

circle the circulations of which are I2x. It is defined by these singu-
larities end thelr images with respect to the circle.

1
2 + 2z, z =

+ Cte
7 -

Xl=iln-

Zo
zOz-}-i
Z

(o]

The minus. sign was introduced into the logarithm so that the con-
stant should become zero when X; 1s calculated for z =1 where
ul=u=0
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2z° gin X

2
l-zo

Xl = 2 arc tan

At u = K + 1K', the function X is x/2 and the function X

lis

2z
n - 8 = 2 arc tan o

l—z02

e
cot—:L= i

sin [1 x(ﬂg )]

We remark that B -

]
1K 1K! sn' K?
sinix(g)=sin®sn-—2—-=isin8—-——'=i sin ®

cnt

and it appears that ©; 1is connected with € by

tan2 %‘- = gin @ - -

whereas the relation between Xl and X is =

e X
1 1
tan '2— tan T = gin X

Deriving this last relationship and calculating the derivatives for
Xl = X = O, one establishes that ’ -

and the transformation is finally

e X(uy, sin @ &
tan -% tan[ ( 1’ 5 l)] = sin[X(ul cos? %n, tan® —éJ-'-):]

It is possible to deduce from this the relations of Gauss

e e
sn Ell cos? —2:£, ta.n2 -2-]—‘]

e
cos2 -2-1: + sin2 ?l sn2EJ.l cos? _E:l: tan2 -EJ-]

sn(ul, sln @l) =
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e <] 8 8
cos? = cnl;l c052 _2;’ tan? _E%IdnEll cos -—2;-, tane 21:|
cnOﬁj_shxel)— 1 — 7281 .
cos? + 8in® 3} sn2 u; cos™ -5, tean? 7%
e e B e 87 |
cos2-7%-+ sin? 2% sn®lu, cos® E%’ tan? 2%
dn(ul, sin el) =B o, 2,=. oy > @l:
cos 7? - sin 5 Sn7juy cosS -, ten -

the use of which 1s less convenient than that of the trigonometric rela-
tion between the X functions.

Making use of the Gauss transformation, one cen obtain from 1t many
others by chenge of origin and interchange of the axes with the aid of
the addition formulas. The most frequently used one is the transforma-
tion of Landen which defines the function Xo (ua,kz) as a function of

X(u,k) for the same origin but a ratio of the real period doubled
(fig. 27).

It is clear that the Gauss transformation applied around the point
K2 + :T.K'2 and for the axes turned by a right angle requires a function

represented by X(u) 1o correspond to Xo except for a displacement

from the origin by -K/2. This geometric consideration guides the
calculations.

First of all, the symmetry of definition of X(u) permits making
a Pirst change of origin

Xo(up, 8in 8y) = X + X[—i(u2 - Kp - iK'p), sin(% - _92)]

The transformation of Gauss defines then the vortex in the rectangle
of twice the length-width ratic

[1u2 + 1K, - K'p, sin(ﬂ- @2)1

1S @2
tan il o tan >

sinlE((—iu,a + iK2-- K'2) cose(% - %2_), tan2<% _ %g)]

Finally, a second change of origin leads to the function X(u, sin 6).
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e,
X [(-iug + 1Ky - K’2)cose(ﬁ - ?2), tane(% - %—2) = X|u +-§, sin @:] - -’é =

- e - oot - B v e, sty - )| - 5

Setting the two last expressions equal: : : _

- 1 - si
cog @=1:za,n‘2<jt 2-2) = n %2

x =
2 T + sin @2 )
2K, iK'p 1
K iK'
cose(£ ] 92)
y 2
u _ u
b1

It remains only to meke the calculations with the aid of the addi-
tion formulas of X(u) - . .

e X(ug, sin @2) B
t n(“— - _..2) l -l = sin (u K n ) -z
a. > tan 3 n siniX{u + 57 g8in @ > .

.

= -dnju + g, sin 8]

Noting that
dnK=-\]cose=ta.n£—e—2) sn5=cos“-@2) cn-IS=sin<"—22-)
2 2 2 = 2 L~ 2

we find that the addition formula of dn v furnishes - --

taﬁl:g _ X(up, sin 82):] _dnu - (1-cosB)snucnu
b 2 1 - (1 - cos 8)sn2u

The notation of this complicated formula has been simplified. It
is possible to deduce from it Ianden's formulas i ’

_ 2::_’2) .
1 tan (E 5

2fx X2
Z!.+1:za.n<LL 2)

sn(ug, sin @2) =



NACA ™ 1435 . 31

dn (u2, sin @2) =

e
= 2(x 2\|sn ucnu
sn(uz, sin 82) = ‘EL.. tan (E- _2_>l—m—

1l- [l + tan2<% - %2-5‘ snzu

cn (up, sin 85) = —

1- [1 - tan2<% - %%)] sn®u

dn u

dn(uz, sin 62) =

vhere the elliptic functions sn u, cn u, dn u, written in abbreviated
form, represent

(i © ) 8
sn u = sn(u, sin @) = sn[ue cosz(’ﬁ - -—22), \ﬁl_ - ta.nh‘(% - 32)]

and so on.

The transformation of Lenden permits approximating the logarithmic
derivative of dn u to the function sn u for a doubled ratio of the
periods.

d 1l - s8in
a[ln dn(u, sin @)] = -(1 + cos @)sn{u(l + cos e)’I_-IE—g{l

The logerithmic derivative of sn u corresponds to a third type of
transformstion derived from that of Gauss by a change of origin, with
imaginary complex varisble, without interchange of the axes.

Likewlse, the functions ei(p(u) and e\k(u) have fields which can

be linked to those of the elliptic functions by means of the ratio of
the periods double or half.

2,4 Multiplicaetion or Division of the Ratio of the
Periods by an 0dd Integer

Due to its enalytic continuation by symmetries, the function X(u)
is represented by & field of vortices of elternate directions. If &
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vortex on p 18 retained, in the sense of one of the periods, with »p
being an odd integer, the field established corresponds agaln to vor-
tices of alternate directions, that is, to a function X{u) for a ratio
of the periods p times as large. The initial function X(u) there-
fore is the sum of p functions X(u) for ratios of periods p times
as large and being deduced one from anotheér by a displacement of the
origin., This property does not exist if p 1s an even number as in the
case of the transformations of Gauss and Landen.

ILet us study first the functions X{u) with the same origin for a
modification of the imaginery periocds (fig. 28), comparable to those of
the Gauss transformation.

The function X(uj,k;) for vhich the ratlo between the imaginary

period and the real period 1s p +times as small as the corresponding
ratio for the function X(u,k) is defined by its singularities.

_p-1 - :
Tz 9 igk! te
X(uy k) = :1 (-1)%fu + 2=, x| + c
__B-
=22 _ B B

Using the addition formula of X(u) and noting that

Kl !
x<% E;_, %) = _xé.iﬂg_, %;
b P -

one has, since X 18 odd

-1
q:L_
2 tan X(u,k) te
X(ul,kl) = X(u,k) + 2 2:1 (-1)2 arc tan X ’_k' + C
= en|=—
P ,

The constant is zero because, for a convenlent determination of the

arc tangents, all terms are zero for u =u-= 0 &t the origin. 2

The values of u; and of u eare linked, according;to figure 28

Uy

Ky _ —

=

The constents k; = sing; and ky = sin 6 are likewlse con-

nected, It suffices to write for u = K the relation between Xl
and X

]
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-pb-1
Q=== .
@ =0+2 > (-1)2 arc tan qK?'n@
g=1 cn(—I—)—, cos @)

Finally, a differentiation of X; with respect to u furnishes

p-1
Q= ~xg— t
sin &, cn(ul: sin @l) Ky Za EL+ ten2x(u, sin @)] cn[%—-, cos 8]

—=1+2
. K '
gin © Cn(u, 8in 8) q:l Cna[&;{)—', cos 8] + tanEX(u, sin @)

The value of KllK mey be specified for u, =u = 0
-1
K. iK' sin @ ' (-0)¢
K Ix _sin'@il+2 2_ K
4 q= cn —P—, cos ©

Let us study now the multiplicetion of the real period by an odd
integer p (fig. 29) for functions X(up,k;) and X(u,k) of the same

origin.

The same argument leads to writing

_p-1
=" : oK
x(uz,kz) = Z (-1)qx(u + k) + gte
-.2-1
2
That 1s to say
q=L£_]: "
Xfapky) = Mu) + 2 3 () are ta.n[tan x(u,k)en (&, k)]
q=L

8ln 8 &and k = sin @ will also be

PKp

The reletion between ko
specified for u =X and up

p~1
A==5—

-G = @+ 2 Z (-l)q' arc tanl:tan 3] cn(—qp—K, sin @):)
Q=1
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and the relation between Ko and K will result also from the calcu~
lation of the derivatives for u =

us =
P§ Q (l + tanax)cn( sin 8)
sin Gp cn(ug, sin e@) K _ 142 (-1) D’
sin @ cn(u, sin @) K =1 1 + tan®X cne(%¥, sin 8)
q=P;l
Ks 13K'p sine q K
K D ik’  sin 6, 1+2 :E; (-1) en D’ sin @
q_:

The above transformations, combined with those of Gauss and Landen,
permit linking the functions X(u) for the ratios of the periods which
have an arbiltrary fraction as the quotient. However, the calculations
are very complicated, and the transformations are especlally useful for
the spproximate calculation of the elliptic funections.

2.5 The Functions ®(u) and w(u)
The functions @(u) and ¥(u) correspond, like X(u), to alter-
nating vortices or sources and glve reason for use of the same method of
addition of the singularities.

The function ©@(u) 1s defined by

sin o(u) = sn u cos P(u) = cn u

Its addition formula may be deduced from those of the elliptiec

functions. ) — -

We simplify the notation by designeting by the subscript 1 the
functions of the variable u, by 2 those of the variable v, and by 3
those of the varisble u + v )

sny cnp dnp + sng cnjy dny

sin ¢5 = 8nz =
1l - singe snl2 sn22
en, cno - sny dny sno dn
cos Pz = cnz = AR 2 > 1 ; 22 2_
1l - gin”8 sny- snp
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2ipz _ cos 93 + 1 sin @3 (cnl + 1 sng d.na) (cng + i snp dnl)
© ~ cos 93 - 1 sin 93 - (cnl ~ 1 snq d.na)(cnz - 1 eny dnl)

8 sn
arc ta.n-ﬂdne + arc 'ba.n—gdn
cny cng 1

arc tan E1n2 tan q:ﬂ + arc tan Elnl tan @2]

3

For completing the symmetry with the formula relating to X(u), one
may note that :

an u =1 ten[p(K + iK' -uﬂ

The same calculation performed for the function ¥(u) defined by

cosh ¥ = 42 u sinh ¢ = tan @ cn u

tanh tanh tanh K - t -
- arg tanh Y1 ¥2| | arg temn ¥ (K - wtanh yp(K - v))
sin © sin @ J
The method of superposition for multiplication or division of the
retio of the periods by an odd integer may be gpplied to the func-
tions @(u) and V¥(u)

- t
CP(ule-l) = Z ('l)q CPG‘I + i(;K 3 k)

oz 5.
tan ¢(u,k)dn \=—, k!
p(u,k) + 2 (-l)(;l arc tan (u, )' P’

gq=1 cn (——-qg , k')
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Oupykp) = > (-1)* Cp(u + 3 k)
= (P(U.,k) + 2 Zl (_1)q- are ta.n[‘ban q:)(u,k)dn (%E,k):]
a= . — - ==

For the function ¥(u), one must be cautlous because this function
0, and in order to avoid introduction of a constant,
= O- N -

is not zero for u =
it is convenient to calculate V(K - u) which 1s zero for u

p-1
(-1)¢ qr(K -u+ E%Q,k)

q::-—.-

¥(E - vk = 222

p-1
q_=_——
2
= ¥(K - u,k) + 2 Z (-l)q arg tanh tanh ¥(K - u,k)
a=1 dn(gg—,k')
g=Bcl - -
14r(K - usza) = > (-1)% III(K u + E,k)
_p=1 . —. .
—" tanh ¥(X - u,k)en(%,k
= qf(K - u,k) + 2 Z (_l)q arg tanh q’( u, )cn(’p‘} )
=H e
P )

2.6 Expensions in Trigonometrical Series

Since the elliptic functions and their logarithms, the latter except

for a multiple of 2ix, are doubly perilodic functions of wu, it is pos~
sible to eliminate omne of the periods by a logarithmic transformation,

foregolng the symmetry of the roles of the two periods.
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We choose to eliminate the period UK by the transformation

inu

oxi L = 1n ¢ t = e 2K
LK

When u increases by UK, the varisble +t reassumes the same value
as the elliptic function F(u) which is a uniform function of +t. When,
in contra.st , u increases by U4iK', the varisble + i1s multiplied by

-2:rt
q2 = -K- and thus is not a uniform function of F since to a single
value of F there corresponds an Infinite number of values of t in

geometrical progression with ratio q2.

To the rectangle of the periods of the function x(u) , there corre-
sponds In the t plane a ring-shaped asrea bounded by the circle of the
radius 1 and the circle of the radilus q2 (£ig. 30) in which the field
of the ¥ functiorn 1is that of four vortices with the circulations %2«
in

b)

in(1K') L 1 £ 2

e X = q2 in -q2 in g and in -qg

PO\

The neighboring rectangles are transformed into rings reduced or
increased in the ratio q2, and finally the X function is defined in
the entire plene by its singularities which are those of alternating vor-

r+
tices on the real axis of t with real complex varisbles g % where
r assumes all integer values, positive or negative.

1
=00 I‘+§
T -
ix=> (-1 me-g -+ cte
Trrmmco £+ qI"l'-Z

It will be convenient for what follows to distinguish the positive
and the negative values of r by writing

r+x -2

t - 2 q 2 + 1% +te
x=Z(-1) 1n T +C
t+q_+'§q__r_% -t

The constant 18 zero as it appears vhen u =% and %t = 1.

Coming back to the variable u

i
Bl
-

|—I

+
Ay
+
™l
®\.

)

RIE

T+
1x =2 (-1)F 1n (l- 2

1
2
1 g 1 ,ad
0 <1+q”§eiax)(1 r*zeiex)

1
Q
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Since the parsmeter ¢ 1is essentially smaller than 1, every loga-
rithm can be expanded in series, for the real values of u. The validity
of the addition of the serles 1s less evident but 1t is accepted without
Justification

(r+%)(25+l)l' 8
= rg n(zs+1)1§% -(28+l)1%{1]
iX(u)—2S§OI§O(-l) = F - e

g8=0 S*'%

1
X(u) =4 > —g sin [(23 + 1)1‘_1_1]
520 1 + g=%t1 28 + 1 2K

The function x{u) 1s thus represented by a trigonometric series,
the coefflcients of which are functions of q, which is 1tself propor-
tional to the logarithm of the ratio of the periods. The corresponding
velue of @ 1s X(K)

0 1
i (-1)8 qs+§

a8=0 2s + 1 1+ q?S+l

e =

and thls alterneting series is rapidly convergent.

For K' = K, in particular, the value of q is e~" and that of
® 1s =n/4 whence the relstion

2 2] (_l)s e-(845%9ﬂ
L <528 +1 1. e-(2:s+1):r

The expansion in trigonometric series of cn u 1s obtained by
differentiation

1 ax on = S*%- T
en u = == = g cos |(28 + 1)—
sin @ du K sin 8 50 1 ., q?S+l 2K

In particular, the value of K is defined for u = O.
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__=_S?:1 @Z

n=0

The asbove serles permit calculation of the elliptic functions much

more easily than by numerical Iintegration of the integrals of the first
kindo '

It ia equally possible to deduce from the first expansion of X

. 3
= r qr+% sin Zp qr+2 Sing—%
X =2 E (-1)" larc tan + arc tan T
r=0 l+q2r+%cc.>s’ﬂi 1-q""F cos Z¥
2K 2K
1
rt+=
P 2q 2 gin &4
= 2 E (-l)r arc tan 2K
r=0 1 - q2r+l

with, in particular,

o . r+-;-—
8 =2 E (-l)r arc tan |—%
r=0 1 - q-21'+1

The functions o@(u) and Y(u) give a basis for camparable calcu~
lations the prinecipal results of which are
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1
0 S+-2— 1 T[_ .
q u
= <2 E cos (28 + 1)—
v =0 25+l 28 + 1 E )2K]
L . o+
= 9 P
0 U = Forep ST sinl:(2s + 1)21{,]
s=0 1 . q

The value of dn u for u = 0 furnishes an expression of K as
a function of q independent of @

S
2 s=1 1 + g=5 " ' -

e S el

s=1 r=1

0 22 : -
=%{}L+2Z qn}

n=1

When the real perlod is much larger then the imaginary period, ¢
is close to 1, and the above expansions do not converge very rapidly.

One may then go back to a ratio of the periods which is more advan- .
tageous, with the aid of one of the formulas which permit dividing the
ratio of the periods by an odd lnteger. One may aslso utilize the above
expansions, within their limits of convergence, for imaginary valuee of
u of the form u =K + iv (where v 1is real) up to v = K'/2, then
continue them by the formula of displacement of a half period.

3. THETA FUNCIIONS

3.0 Advantage of the Theta Functions —

The elliptic functions and thelr logarithms are represented by
singulerities of alternating sense; the necessity for this is clear for
those which are real, or have a real counstant part on the contour of a
rectangle due to the method of analytic continuation by symmetry. This
limits the possibilities of calculation by addition of the singularities
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in the whole of the plane. The difficulty appesred first for the multi-
plication of the ratioc of the periods of the function X(u) by an even
integer. It was also clear for the functions @{u) and ¥{u) and, 1if
we had preferred to conslder the logarithms of the elliptic functions,
represented by sources the strength of which ls conserved in the course

of the conformal transformstions, the difficulty would have continued to
exlst for the elliptic functions whose singularities are poles, which are
Just as easy 'to edd as the logarithms, but whose rules of conservation
affect the residues, that 1s, the propertlies of the logarithms which inte-
grate themn.

In order to separate the various singularities which reproduce them-
selves periodically at the intervals 4K and L41K', without associating
them automatically with singularities of inverse sense, it i1s desirseble
to define a function presenting singuilarities which are all of the same
sense.

After separating the essential singularities, we have only to con-
slder those of the sources and of the poles. These latter .are deduced
from the sources, whatever their order may be, by differentiation. It
suffices therefore to study the sources.

The theta functions are the analytlc functions, the logarithms of
which are represented by the fields of double infinities of regularly
spaced sources at the vertices of rectangles. One theta function is
linked to the study of the elliptic functions with real modulus whose
retio of periocds is equal to the ratio of the sides of the rectangle
defining thils theta function. In generallzlng according to the rules
of reduction of the elliptic functions, it is sufficient that the pro-
portion of these ratlos be expressed by a simple fraction, a ratio of
two integers.

An elliptic function with complex modulus k2 may likewlse be
assoclated with a theta function corresponding to the field of a double
infinlty of spaced sources with perlods the ratio of which ceases to be
purely imaginary. One sees that, if the projection of one period on
another is a simple fractlon, a ratio of two integers, the theta function
willl be identicael with the theta function associated with elliptic func-
tions of real modulus, except as will be discussed later.

The elliptic functions with Ilmaeginary modulus have, so far, only
infrequently been applied in fluid mechanics, and do not come within
the scope of the present study.

3.1 Definition of the Theta Functions

The analytic functions are related to the flow of an incompressible
fluid, and 1t is not possible to conceive of an infinite number of sources
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without providing for the disposal of thelr outputs. The theta functions
prohibit placing sinks at finite distances, and one must admit the exist-
ence of an essential singularity at infinity which characterizes the infi-
nite output of the sources. T

It would be possible to reduce the double infinity of the sources to
a single one by logarithmic transformation as was done in the preceding
chapter for the x(u) function, but it is simpler to argue directly in
the plane of definition of the theta function for illustrating the mul-
tiplicity of determinations of this function.

The field of a simple infinlty of sources, regularly spaced on a
straight line (fig. 31), is known and corresponds to the analytic function

Inisin %5]
Thus, 1t is possible to define a theta function by superposition of
terms of the form

z + rib
sin =« (—-‘&——)

in

cosh (m g )

where the denominstor ch(rﬁ g) was Introduced in such & menner that

the logarithm tends toward zero when r increases indefinitely while
z and b/a remain constant.

Te=x |'sin n(w)
Ine= > In 21|+ cte

Y= - © I- cosh nr B

Ir=x gin (1( E_-I;I‘_ib)

r=-® cosh nr &

However, this shows the possibility of defining another theta func-
tion by lnterchanging the roles of & and b, and of defining en infinity
of theta functions — comblning the two first-ones after various changes of
origin and addlng functions which do not have any singulerity at finite
distance like the circuler sine and cosine functions. The singularity
to be retalned at infinity is therefore not actually determined.
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It suffices for the intended applications to choose a single func-
tion for a given distributlon of zeros, and only the first definition
given by the above equation will be retained. A simple transformstion
yilelds

r=w 2 A
6 = " x sin(%%) - COSZ(’f 3:3
r= cosh' (n:r 'a'.)

The constant is chosen real.

The theta function admits the period 2a. It is real when 2z is
reel and when the real part of =z 1s an odd multiple of a/2. It is
purely imaginary when the reel part of 2z 1s an even multiple of a/2.
Its field is represented by figure 32.

Since the symmetry of the roles of & and b is agreed upon and
the scale factor is rather inconvenient, the notations are simplified

= 2 _ib __41
V=g T——a—-ﬁlnq Q<1

8(v,q) = 2C, sin ﬂvﬁ (1 - g°r eEﬁiv)(l _ q2;r:- e-2n:iv):|
r=1

In order to slmplify the notation in the calculations which lead
frequently to a displacement of the origin by & quarter period, one
denotes the value of 6 after such a change of origin by el.

[»e]
=2l
el(v,Q) = e(v+ %,q) = 2C_ cos v [] (1 + qF 2“1"’) (1 + qzr e V)
r=1

Because of the symmetry of the roles of a and b, masked by the
cholce made for the theta function, the calculations lead llkewlse to
utilizing a displacement of the origin by 1'/2 s but the funce

tions O(V + E ) and Gl(v + é-,q_) are not real when v is real.

1

-= o)
el(v+ :2|:,q)= Co q 2 e—iﬂVH [l + q 2r+l 211‘('\1‘)(1 + q21‘+l -ativﬂ
r=0
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The product el(v + %,q_)ei’w is real when v is real. It wlll be

designated by 7\62(v, q) and used in the calculations, in preference to

using el(v + %,q).

If the origin is displaced once more by T/2,

>
[<»]
[}¥
<
4
=
[%
«Q
e
|

1

-% ~tiv
=q 2 e 8. (v,a)

Hence, the two formulas

i

~-niv
Gl(v + %,q) = Ae GE(V;Q)

1
"2 eni
62(v + %,q) = &T eV 93_'("';‘1)

=Cq q 2 (l + e-21riv) ﬁKl + q_‘?'r e&tiv)(l + q&r e'e’tiVZ,

In order to complete the symmetry of these two formulas s one chooses

A= q'l/h.

Elimination of 6, after chaenge of v and v + -"E’ in the first

formuls furnishes

Bl(v + T)Q) = q-l g2V el(V;Q)

Finally, a 65 function can be defined by

83(v,q) = 92("’ + %,q)

The functions 1In 6, &and I1n 63 differ only by the origin of the
camplex variable and are represented by the same field (fig. 33).

Finally, the theta function and the auxiliary functions 81, 0o,

and 95 may be deflned by the infinite products
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=~

o(v,q) = 2C, 8in nv ﬁ' [ 2r Zn:iv) (l - qer e_2ﬂiv)]

r=1

el(v,q) = 2C, cos ny ;Ij;- [(l + Q.Er eaﬁiv)(l + qEr e-&tiVH

8,(v,q) = Cg a %;ﬁo [(1 b gL 2uiv)(y , G2rel -Ezrivil

¢y a L‘H [(1 G2+l EniV)( _ g2l e-znixa]

GB(V:Q)

-

with the formulas of change of origin by a quarter period, written with-
out mention of the parameter g

e(v + -32;> = 8,(v) el(v + %) = ~8(v)
62(v+%) = 0,(v) 93<v+%)= 92(v)
ev+-=1"%e:thv v ox{v+L)=1 %e (v
( ) q 3(V) 3( 2) q )
3
el(v+%)= g Fe paid 65(v) 92(V+%)- q-)]f (V)J

and for a displacement by a half period

o(v + 1)

-8(v) o1(v+ 1) = -Gl(v)

8o(v + 1)

]
D
W
~~
<
S

-.- NG)) 83(v + 1)
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(v + 7) = - -1 g2ixv 8(v) 65(v +T) = -q’l g2tV 65(v)
81(v + 7) = qfl g=2inVY el(v) 92(v +T) = qfl g 2iny ea(v)
— .v2 -

b A

The last formula mey be interpreted. The function 6y(v)e 7 admits

the period 7. It is real when the veriable v 1s real or purely imaginary.
It corresponds to the interchange of the roles of a and b in the initial
notation and its logarithm 1s represented by figure 3k.

This remark may be made more specific:

Each one of the terms of 62(v,q) admits itself an infinity of zeros
and can be represented by an infinite product :

(2]
14 BTl 2l (1 . q2r+1) TI I - 2v
— 1
== (28 + 1) - i(2r + 1)-1%{-

Hence, the purely formal expression
X!

K 'It[
62 V,e . = 62 O,e K TI- 1 - 2V

ES~ @ S (25 + 1) - 1(er + 1E

This product is not convergent, but an ertifice that consists in
arguing In terms of a derivative of sufficiently high order that the
coefficlents of the factors tend rapidly toward zero whem r or s
increase. It 1s more convenient to derive a sum by calculating

- 1K Z"" = (28 + 1) + f(e + 1)K' /K
a B==® I'=e©0 1 - 2v
] (2s + 1) - i(2r + L)K' /K

This sum is convergent and shows that the function _92(§%%e-§¥)

which corresponds to the interchange of a and b in the definition of
8o 1s related to the original function by .
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-ZK 3 1.4

a2 (VK K )] 1K1\’ a2 ( K
=—|1n}bn\ ==,e = (&= In |8, \iv,e
d‘V‘3 [2 Kl" ( K ) d‘.V; 2 2

The integration furnishes
S ks SA YN
! K +Bv:
62<¥{I'{,e K ): 0,\1v,e e

The periodicity observed above leads to replacing v by VvV + KKL
in this relastion., The formulas for change of origin then furnish

The constant C may be specified for v =0
nK! -k
- K 2
ez(iv,e K )_ e'ﬁrgv 62<VEK,e K')

05 (O,e-lt%—') ) 92(0,e-¥{$)

Chenges of origin permit deducing from the above formule the group
of formulas for change of axes

( "ﬁé'l') x (K _I:;)
8, \lv,e ef,.ﬁv‘a 05\ 2o

62(0 e

%)
ool ™) g eI(K,, &)
oo, )
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3.2 Bxpression of the Elliptic Functions and of Their

Logarithms With the Aid@ of the Theta Functions
An elliptic function is a retional fraction of snu, cnu, dn u.
Iet m be the degree of 1ts numerator and n +the degree of its denomina-
tor with respect to the whole of these functions. Except for the case of
reduction, there exist, in a rectangle of LK width and 4iK' height,
m zeros and 4 n poles which can be determined as roots of polynomi-
als. The numerator, for instance, may be written 1n the form

Gm{sn u,en u) + dn u Hy.j(sn u,en u)

1ts roots are among those of
Gmg(sn u,en u) - (l - kesnzu)Hm;lz(sn u,en u)

This function may be written in the form - - —=

gam(sn u) +cnu h2m_l(§n u)

its roots are emong those of ' _ R

game(sn u) - (l - sn2u>h2m_12(sn u)

This polynomial of degree U4m in sn u has four m roots and
every root defines four zeros 1n a rectangle of the periods. Among these
16 m zeros, only four m are zeros of the numerator of the elliptic
function since the method that wes followed furnishes the zeros of

Gp(sn u, ¥ en u) £ dn u Hy_j(sn u, £ cn v) =0

The determination of the roots of a polynomial of high degree can
be difficult unless it is only a matter of numericael calculations. Once
that determination is made, 1t is easy to separate the convenlent roots.

If the degree m of the numerator differs from the degree n of
the denominator, the elliptic function presents four poles of the order
m - n or four zeros of the order n ~ m, with the common poles sn u,
en u, dn u. Finally, the function presents as many poles es zeros, if -
each one is counted with its order. R
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The logerithm of the elliptic function 1s represented by sources,
the intensity of which is the product of 2x and the order of the zero
or the order of the pole, counted negatively. It appears, intuitively,
that this logarithm is deflined by these singularities like a sum of
logarithms of thete functions. To demonstrate this, it is Jjust as easy
to reason directly regarding the elliptic function F(u) which can then
be written

i ) ——EE:;) X o o o X B(E—£§:E>

oSl x - - - xo()

where 815 ¢ « -5 85 are the zeros, Dys o o e bP the poles after

eventual reduction of the poles common to the numerator and denominator.,
If multiple poles or zeros exist, the corresponding theta function sppears
with a degree equal to the order. Writing that F(u) admits the periods
4K and LiK', one will obtein, according to the formulas for displacement
of the origin of the theta functions

F(u) £(u)

1E (r+i
£{u + 4K) = £(u) flu + biK') = £(u)e 2K(r+ *)

with

r+is=bl+oc-+-bp-al.-o-ap

The function £(u) has neither pole nor zerc at & finite distance.
Tts logaerithm g{u) has no singulasrity at a finite distance and follows
the simpler law

g(u + 4K) = g(u) + 2ixA

g(u + HK') = g(u) + %% (r + is) + 2inp

where AN and p are integers.

Neither has the derivative dg/du a singularity at a finlte dis-
tance, and since the derivetion of the above formulas shows that 1t is
doubly periodic, its continuation to infinity does not introduce any
singularity et infinlty. It can therefore only be & constant.
Consequently
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g(u) Au+ 3B - B Crpp—

vwvhere A and B are constants.

Using this expression in the law for displacement of the periods
for g(u), one finds

r + 18 = -BpK + LiAK! A = im\/2K -

The sum of the complex varisbles of the poles minus the sum of the
complex variables of the zeros is a multiple of the periods which cer-
tainly proves that it 1s not possible to represent by an elliptic func-
tlon a function defined by arbitrary singularities as was indicated in

section 2.1. '

Even though the zeros and the poles are defined except for integer
multiples of the periods, 1t is gtill possible to choose them in such a
menner that r + 1s, is zero. In this case A i zero, g(u) and f£(u)
are constants: '

r(a) - SCEiﬁfﬂg X o o o X e( 4K?P) L ot
e(ﬁi—rl)x...xe(—lfB)

yx Lk

The constant is to be determined for an arbitrary value of the
varlable u. The logarithm of the elliptic function F(u) is simulta-
neously determined.

In the simple cases where the zeros and poles are obvious, it is

frequently more convenient not to try to make r + is =zero but to
replace the constant by

Finally, if four zeros or four poles differ only by half periods,
one will be able to replace the product of the four theta functions by

eL-_a-.). .
( 2K ) - o
let us apply to the functlion sn u which presents the zerés of
u u - 1K*
8l — ] and whose poles are the zeros of (——————-
(21{) P = )
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ofu e(u - iK') —
R e
2K

or else, choosing uy = K, expressing 6 as a function of 83, and
noting that sn u, 8, 65 are real with u

_o(Z) | o5(3) _ o(Fk) | oalo)

sn u =
L oL iR
o5(%) °(3) () e
Likewise
0 (A% 0z (o) e, (A 8x(0)
cou = l(?) X 93(0) dn u = _2(?5) X —%—e )
o]
5z 1 o5(zx) °2
From the last relation, written for u = K, there results
2 (O) L 1 2r+1 .
k! = cos g = ALl . ]i[ ==4a
2(0) =0 2r+l
. l+ g

From the relation pertaining to sn u, written for uw = K + 1K',
results

4
(1 + ¢2%)
k.=sine=lt2-l(—o):|2 11-2 il;g- i
85(0) 1T (1 + q2r+l)

r=0

These formulas may be utilized for calculation of 8, Jolntly with
the formules of 2.6. Other, more convenient formulas will be set up
further on. As in 2.6, when K' < K, one may interchange the roles of
the two periods, setiing

!t — o K' 1 = _x2

q' = e K In g' In g = -x
which permits still using the sbove. formules for a value of q at most
equal to e, : _

The functions @, X, ¢ maey be defined by
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i}
D
n
CaneY
o
g
[«>]
o
S’

tan @

tan X

tash ¥ 01%(0) _ ox(3k)

u
= eézo)93(o) 05 %%9

3.3 Expansions of the Theta Functions in

Trigonometric Series

The logarithms of the 8, and 63 functions may be expanded in

trigonometric series like the ¢, X, V¥ functions, but it is more
advantageous to directly expand the theta functions in trigonometric
series.

Let the function be, for instance, 6, which, due to its being

even and to its periodilcity, may be written, for a convenlent value of
the constant Cg left undetermined in gection 3.

o0 o0
05(v,q) =1+ 22  ag cos 28nv = +) ag e2siny
s=] S w0

Inserting this expression into the relation
92 (V + "ér':Q.) = q-l e-Qthv GE(V;Q)

and setting the terms equal, one will find

- - - 2
o = g2s-1 %1 = q(25 1)+(28=3)4¢ e o+l -

and consequently

w _
2
65(v,q) =1+ 2 > . q® cos 2snv
8= .
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[}
2
93(V:9.) = 92(" + %—,Q) =1+2 21 (-l)sqs cos 2sav
8=

Iikewise
Iny
6,(v,q) = qﬁ e 62('9' + ?él,q)

=SZ°°: qsa*‘s*% o(28+1)inv

-0
* (s+3'2-)2
=2 E q cos(2s + 1)nv
8=0

8(v,q) = -el(v + %-,q)

2
5 ] (—l)sq(s-l-%)
s—

sin(2s + 1)xv

The value of C, resulting from these expressions will be retained
hereafter. Setting, for instance, the two values of el(o) equal:

£ e

c = s=0

o =) 2
e

Ye=1

The trigonometric series of the theta functions are very convergent
-and convenient for the calculation of these functlons and of the elliptic
functions. Unfortunately, the theta functions do not satisfy any simple
rule of addition permitting calculation of thelr values for complex values
with the ald of thelr values for real values.

The values of k and k' corresponding to a value of q may be
calculated by the formulas
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1

2

o 5

- s 8

k' = [95(0)]2= ';+2%( 1
9(0) L1+2 > o5

which result immediately from the expressions.of the funetions sn u,
cn u, 4dn u, with the aid of the theta functions which have been —

established in the preceding paragraph.

These formulas are retaeined for the calculation of k and k!,
in preference to the formulas of 2.6 and 3.2.

One will note, moreover, thaet the formula established in 2. 6 Tor
the calculation of the quarter period K i1s written

T = [92(°)]

3.4  Elliptic Functions With Given Zeros and Poles

If the zeros a; . . . &y and the poles by . . . bP of an elliptic

function are given, obviously, for convenlence, satisfylng the relation:

-'a1'+'._..ap=bl+..._+bp

the function is defined by -

) o) . )

Flu) | \TIK 4K — =
) e(%' o eC‘ ;Kbp) e(uo 2—+Kbl)' o e(i%{fz)

where F(ug) 1s an arbitrary constant chosen as the -value of the func-

tion in a complex variable u, different from those of the zeros and

the poles. The problem 1s to show that it is possible to express this
function with the aid of the three functions sn u, cn u, dn u,



NACA ™ 1435 55

Let us begin with the simple function admitting two zeros and two
poles. The relation

&l+8.2=bl +b2

expresses that the logarithm of the function is represented by two sources
and two sinks wt the vertices of a parallelogram. One may also regard it
as corresponding to the superposition of the field of a sink at the center
of the perallelogrem which 1s capable of ebsorbing the output of the two
sources and of the field of one source feeding the two sinks. Besldes,

if the problem is solved when the center of the parallelogram is at the
origin, the formulas of addition will permit a change in origin. Thus,

it suffices to study
e(u - ul)e(u + 4y

L¥ LK
2/u
o< (X
(%)
This function heas the same singularities as 1 - and,
en2 2L en2 B
2 2
choosing as a reference u, = 2iK!
u-ul) <u+ul) 02(T
2wl r 1 =e(mc N\ ()
2{. 2 2u w u
sn sn< 5 92(l> e(l _l)e(l... _l_)
B 2 LK 2 "I/ \2 T IK

which becomes after reduction
2 2 (U. - ul) (U. + ul)
8 ]
11 _ 87 (0)e57(0) LK LK
2 ¥l 2 2 g(u) z(ul
sne — = e e oA —
2 "3 2 (0 LK 1|-K)

on the other hand, the formulas of addition establish

2u -
ep- 2 _l-cnu

2 1+ dn u.

The problem is thus solved for the elementary elliptic function
retained.

Let us go back to the general problem and suppose that the number
of the zeros and of the poles p 1s & power of two. If this is not the
case, 1t will still be possible to multiply top and bottom parts by the
same theta functions.
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let us then group the terms two by two:

e(u - a-l)e(u - a2) = 92(u - .Biia_e)f(u)
LK LK 8K

where f(u) 1s expressed as a function of cn'u, sonu, dn u.

Likewise -

_al_+a2 _al+a2=2(_al+a2+a3+a)+)
e( 8K )B(u 8K ) o7\ — ) e(w)

Since the sum of the complex variables of the roots is equal to the:
sum of the complex varisbles of the poles, the method eliminates the
theta functions, and s rational function of sn u, cnu, dn u remsins.

3.5 Use of Thetsa Functions

Theta functions sppear useful for the calculation of the elliptic
functions and for the investlgation of elliptic functions with given

singularities. _

They permit establishing more simply the properties of the elliptic
functions demonstrated in the preceding chapter. All demonstrations
were, in fact, based on the possibilility of addition of singularities,
and it is much more convenlent to isoclate these singularities rather
than search for comblnatlions permitting compensation of the parasitilc
singularities. The formulas for multiplicetion or division of the ratio
of the periods by an even or odd integer are written very simply

1
e(x_ q'i-")9<v + 1 %) e(V+ r -1 %)
8(v,a) _ "\r’ r L) Y
el(O:Q) 1 % 3 % 1 %
9 _’q 9 —,q « 5 e e l - -—-,q
2r or

and -

6(v,a) G(v,qr)e(v + T,qr) . .. eEr + (r - l)T,que:ri(r-l)(v~32'-)

81(0sq) ~ el(o,qr)el(T,q_r) “ .. el[(r - l)'r,ra}

Finally, the theta functions permit calculation of the elliptic
integrals as will be shown in the following chapter.

e
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We note that it would heve been possible to study the theta func-
tions before the elliptic functions, but the method would have been
particularly for these uniform functlons with double periodicity, and
would have concesled the generalization to the Schwarz functions.

4. ZETA FUNCTIONS AND CAICUIATION OF THE ELLIPTIC INTEGRALS

4.0 Definition of the Zeta Functions

The theta functions were introduced, in the preceding chapter, by
their logerithms, represented by fields of sources analogous to the
fields of sources and sinks of the logarithms of the elliptic functions.
Tt appeared there convenient to use the theta functions for the calcula-
tions, in preference to their logerithms; however, it is better to study
the latter whose derivatives are simpler, in the present chapter.

A zeta function is the derivative of the logarithm of a theta
function

z(v,q) =-§; ln[B(v,q)]
1
and likewlse 2y, Zp, Z3 (capital §) for 6,, 65, 63.

Derivation of the relationships
nfe(v+ 1,q)] = 1n[-6(v,q]]

lnE(v+ T,q)] = ln[S(v,q)] - 21:1('V'+ %)

establishes for the zeta function

zZ(v+ 1,q) = z2(v,q)

Z(v+ 1,9) = 2(v,q) - 2ixn

The zeta function admits the real period 1 and, except for a multiple
of 2ix, the imaginary period .

L' me zets function thus defined is linked to the function 2Zn(u,q) of
Jacobi by Z3(v3q) = 2KZn(2Kv,q). It seemed here more convenient to choose
the logarithmic derivative of the theta function with respect to its normal
variable v rather than with respect to the normal varisble of the elliptic
functions u which is scmetimes 4Kv.
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Likewise; the differentiation of the relation .

(v 5] = mfost] - wa(r 5) -

glven

Z(v + g-,q) = Zz(V,q) - =i

shows that, when + 18 real (with ZB(v,q) being.real), the func-~

tion Z(v-+ %,q) has a constant imaginary part. _ -

On the other hand, the function Z(v,q) admits a pole at each zero
of 6(v,q). It is purely imaginary when the reel part of v is -1/2, 0,
1/2 since 1n © has, on these straight lines, a constant imaginary part
when dv 1s Imsginary. The representative field is that of figure 35.

4,1 Properties of the Zeta Functions

In the neighborhood of one of the zeros of 0, for instance Vs

the function 1n 6 behaves like In(v - v )+ C', and Z behaves like
1/(v - Vl)' It admits therefore a double infinity of simple poles of the

same sense, In contrast to the elliptiec functions which have singularities
of alternating sense. dJust as 1t has been possible to define the logarithm
of an elliptic function by superposition of logesrithms of theta functions,
it will be posslble to define the elliptic funetion directly by superposi-
tion of zeta functions. B

Before examining this essential utilization of the zeta functions,
it is of interest to study some of thelr elementary properties.

If the zeta function represented in figure 35 is derived graphically,
the field obtained will present a double pole at the origin, the deriva-
tive will be real for the reasl values of v and for those values of v
which have T/2 as thelr imsginery part since zeta and dv are real.
It will also be real on the straight lines corresponding to the real
parts of w: -1/2, O,.l/2, slnce both dZ and dv are imaginary on
these straight lines. The fleld 1s that of figure 36. It is defined
at the interior of rectangles on the contour of which it represents a
real function and corresponds to an elliptic function. . .

This function is, except for one constant and one factor, l/én22K§
or, in other words, the function p(2Kv) of Weierstrass. We shall never-
theless prefer to evaluate the derivative of the function Z5(v3q) which,
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as we have seen, differs from Z(v,q) only by the origin and one con-
stent (f£ig. 37).

The field is that of & double pole at the center of & rectangle
representing, always, except for one coefflcient and one factor, the

function dn22Kvu

cflv[ZB(v’q):l = A dn2(2Kv) + B

which by integration becomes
M 2
Z5(v,q) =C + BV + Af Ein (2Kv)]dv
o

In the neighborhood of v = 'r/2, the 25 function behaves like

1
—; and its derivative lilke z——:i:jz On the other hand, dn(2KV)
2 v©2
- S
T

(v - 3)
The Zz function admits the real period 1, and, writing for simpli-

fication of the notation

E =fl/2 [an2(2kv)] 2k av
(o)

behaves like and consequently A = LK2.

we shall find, writing that Z5(V'+ 1,q) = Z3(v3q), that the constant B

is -=4KE. The origin of the symbol E will appear in 4.4 when the
elliptic integral of the second kind is studied.

Continuing the Integration

10 20D oy, uxaf dvlf Eine 2Kv, ) + E/K] x av,

2(05 a)

and writing that 93 admits equally the real period 1, we shall find
that C = 0. Consequently
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ZB(V,Q) = ufﬁv [dnE(EKvl) - %] X avl ” -

8x(v,q) v v
i 2 i [y [ farP(ers) - B ey
63(0,q) ) o -

and for v = 1/2 o DU

0o(0,q) 1/2 vl[ 2 E]
ey~ e, [l - R x e -

Besides this property of 1ts derivative, the zeta function hes Eﬁe _
advantage of satisfying & law of addition. The logarithmic differentiation

e(v + vl)e (v - vl) 622(0) [ 1 o J

ez(v)ez(vl) ) 912(0)632(0) l_sne(szl) i sn? (2Kv)

furnishes in fact

Ly cr_1(2Kv)dn(2K:\:r-)sn2 (2Kvl)
sn(2Kv) | sn2(2Kv) - sn2 (EKV]_)]

Z(v + vl) + Z(v - vl) - 2zZ(v) =

Interchanging the roles of v and 2] and noting that Z 1is odd,

'|||i.

one has . : S

_ LK cn(2Kv )dn(QK“V )Snz(aKv)
2w -2l ) - () - SR

and by elimination of 2Z(v - vy)

c:n(EKv)dn(QKv)sn3 (2Kvl) - cn(ﬂc‘%l)d-n(EKvl)sn5(2Kvﬂ)“

- oK
afyr+vy) = 2(v) +2(wn) + sn(EKV)sn(2KVl)Esn2<2KV) - Snz(aKvl)]

This is a law of addition for Z(v) analogous to_that of the
elliptic functions.

Applylng it to vy =&, glves - o ”_'

X
2

!‘I I
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en(2Kv)dn(2Kv)
sn(2Kv)

zz(v) = 2(v) - 2K

and this formuls relates simply Zz to Z wvhereas Z; and Zp are
related still more simply to Z and Zz by & simple change of origin.

Making a change of origin of T/2 1in the formula of addition of Z

Z3 (v + V‘L) = Z3(v) + Z3(vl) - emsasn(sz)sn(aKvl) sn [2K(v + vl)]

This formuls of addition is simple. In order to be able to apply
1t to the calculation of Z3 when v is real and vy purely imagineary,

one must have availsble a means for calculation of Z3(iv).

The relatlion between the values of the zeta function for the imaginary
values and for the real values of the varisble result from the corresponding
relationship between the theta functions established in 3.1

: in
1 2 -
ln[ez(iv,e T)] =+ B 4 an 92(+ e T) + cbe

which furnishes by differentiation

ixn
thT) _Lenv 1 ( iv T)
ZE(iv’e =+ _1'."‘ + ‘1'_' 22 + ?,e
and by a displacement of origin replacing v by v - %

ix
Z3 (:Lv,e ) == ;r‘ Zl('r s T)

For practical purposes, it 1s more convenient to use the relation

in the form
i imT any 1v L "—i'r
Z3 {iv + € = + Z3 + =,e

Al

for calculating
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inT i 1 1l it
Zzla + 1B,e ] a ~ =+ 1B + =,e ]
3 ’ Bla -3 2’

il

Z5a,-é-,e + ==+ = Z3

2K1:23nE2K( - %):lsn[ (15 + )] en [2K(o; + iﬁ)]

where the Z§ functions eppearing in the second term correspond to real

values of the varisbles when a and f are real. The calculation of
the 2z functidn for the complex values of the variable is therefore
reduceg to the calculation of the Zz function for the real values of

the variable. The other zeta functions are simply reduced to Zj.

From the sbove formulass there results an important relation between
E, E', K, K

1ix
d i:r'r) _2x .14 v, 1 "l")
E_‘-’-_ 23 (iv + %,e ] =5 + T a—G Z (T + 2,3

and according to the formule for differentiation of Z3

J-I-ILK2 Eﬂ.n2<2iKV + K,k) - %] = %T. + _i_ % 4K|2E_n2(2K|v + Kl,kl) - E_':'
T2 ) Kt

the laws of eddition show that thils formula is'independent of v and is
written

4.2 Decomposition of the Elliptic Functions

Just as 1t was possible to decompose the logarithm of an elliptic
function into logarithms of theta functions and consequently the function
into a product of theta functions, the poles of an elliptic function may
be approximated by those of a zeta function for definition of the elliptic
function by the sum of its singularities.

Iet us first assume that the elliptic function has only simple poles. -
It may be represented by
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e(u-al)x...xe(_'_f?.)

F(u) = 4Kb LK % G
(5 - x o)

where all poleg by, . . . bP are distinct.

In the neighborhood of a pole ), the function behaves like
- & - &
0 (b7\ 1) C e (—h—M )
K/ = Tk c

(2 - () )

Flu) ~

The same 1s true in the neighborhcod of & pole which differs from
by only by multiples of 4K and of LiK'.

On the other hand, in the neighborhood of the same poles

b)) ) ool

~

G 9( ;Kb?\)

Z[u-bﬂ 4K _8'(o)

Consequently, the function

G(u) = Flu) - C %EP e(bk ;‘Kal) SR e(b? %Ka ) Z< ;-Kb%>

A=l 8'(0) X « « G<:2L13242>

hes no singularity et a finlte distance. Its derlvative is an elliptic
function without singularity, even at infinity, by reason of its double
periodicity. It can only be a constant and consequently

G(u) = A + Bu

but G(u) admits the period U4K and hence B is zero

bx-al)x, ,B(M

F(u) =A+C ZV::D e<—_lu?_ ) <O_7\_-_b:3{ ) Z(u ;Kbx)

A=l '
8'(o) X . . . 8 e
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The elliptic function is thus found to be decomposéd into zeta
functions.

Iet us note besides that F(u) admits the period L4iK' and that,

u->=
vhen u increases by UuiK, the function Z(——ZETA) decreases by 2ix.

Consequently
e(u) X o o o X e<b_7\_'_EP_)
=0

7\5 4K 4K
A=1 bA =~ bp
= 6'(o)x...xe—M.{—)

This indicates that the sum of the residues of an elliptic function
in 1ts poles is zero and expresses simultaneously for a p that is at
least equal to 3, a general property of the theta functions which one
must not apply without observing that, for the chosen form of the
elliptic function, the sum of the complex variables of the zeros is
equal to the sum of the complex varlebles of the poles.

If some poles of the elliptic function are multiples, the calcula-
tion 1is eppreclably more complicated. ;

(—_“‘al)x...xe(_fnu' ) “
F(u) =C 4K LK
u - b7\) ( - bp) -
T ——— X 3 . . X e e ———
e IK |
& '
Noting thet " 1.Z(v) behaves in the neighborhood of v = 0 like

(1Y - t ~
(1) = 21 o cnall form, for v = 2P\ the elliptic function
o ’ ’ b

oo oD

a a7t z(v) 9(—4—{" LK

a.-l - 1 _b
™= 1t 6'%(c) X . . .xﬁ(f’l‘-—i’)

ri(e) = Z8 ()
TK

This new elliptic function admits the pole u = by at most to the
order o - l; starting again, we shall progressively reduée the order
end we shall find the principel part in the neighborhood of each pole.
The function F(u) differs from the sum of the principesl parts in the .-
nelghborhood of each of its poles only by a constant. The elliptie func~ B
tion 1s thus decomposed into a sum of zeta functlons and into derivatives .
of zeta functions. - - S
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For practical purposes, to calculate the principal part in the
neighborhood of a multiple pole, one will proceed as for the decomposi-
tion of rational fractions, replacing every term by a limited expansion.

4,3 Calculation of the Elliptic Integrals

An elliptic integral is defined by f.P [y, \Ky - (¥ - ¥2)»

J(y - y3)(y - Vh)] dy where P 1is a rational function of the three
variasbles.

The form of an elliptic integral is invarient in the course of an
inversion or of an inversion followed by a symmetry which can be defined

by
ax + b
cx + d

The critical points X1, Xp, Xz, Xj are the Images, by inversion
symmetry, of the criticel points ¥1» ¥Yor Y35 Yy

Iet us first assume that the four critical points of the y-plane
are not on the same clrcle, that C; 1is the circle which passes through

the polints Yos Y35 Vi that C, 1s the circle which passes through
Y3, ¥hs V1, ebe., (fig. 38). Iet us draw the circle C which bisects
C3, Cy, and the circle C' which bisects Cy» Co and let us meke an

inversion with respect to one of the points common to these circles.
The circles C, C' are transformed into stralght lines. The circles Cq,

Co on one hang, 03, Cy on the other, are transformed into circles of

the same radius and, 1f the origin is chosen at the intersection of the
images of C, C', if the x axis is chosen in the direction of the two
most distent Imsges, for instance X5 Xp, if the scale is chosen so

that the distance will be 2, the critical points are

1
x2=-x_l=l ;}(5=.--x}_*_=E

where k 1s a number which is generally complex and has a modulus smaller
than 1.

The elliptic integral tekes the form

fPlEc,v& - x2,\1 - k2x2:]dx
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For the method of construction which was followed, k cannot be -
reel, but it can be purely imaginary and in this case the integral is
reduced to that of an elliptic function by the transformation

k2

x = cnfu,

If k 1s not purely lmaginary, the elliptic integral is reduced to
that of an elliptic function with imaginary modulus, which exceeds the
scope of the present study.

Let us now assume that the critical points in the y-plane are on the
same circle C, that y; and Yy, are consecutive, and that C; and C,

are the circles orthogonal to C at ¥yis» Y3 on one hand, at Yo and ¥y
on the other (fig. 39). Finally, let Cs be the circle tangent to Cg,
Cp, and to C between y; and Y. "

If we make an inversion with respect to the point of contact of C
and 05, the two circles are transformed into two parallel stralght lines.
The .circles C; and Cp have therefore the same radius, and choosing

the axls of the abscissas following the straight line transformed from C,
the origin in the middle between xy, Xp, and the scale in such a manner

that Xy, X is 2, one obtains ol

Xl=—X2=l Xy = -Xz = >1

L

The elliptic lntegral thus assumes the form

f Pz(x, b-2  1- kzxa)d.x

and becomes the integral of an elliptic function by the transformation

x = sn(u,k)

If now the four critical points Y15 Yoo Yz Yy are on a clrcle C,

the points ¥z and Yy and the points ¥y and Yo (fig. 40) are on
opposite sides.

The above construction will thils time furnish the following values T
for the images of the critical points - ' - C
- _ _ _ L
x3—-x2—l x2--xu-—2<l
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and the elliptic integral takes the form

fP3|:x,y/(l + x) (l + a,ax),m - x),(l + a?x)]dx

It 1s reduced to the previous form bj the transformation

N Co P C ol 1)
(aa - 1)x1? + (me + l)

Finslly, an elliptic integral 1s the integral of an elliptic func-
tion. The latter always has a real modulus when the four critical points
of the 1nltial integral are on the same circle or on a stralght line. It
does generally not have & real modulus when the four criticsel points of
the initial integral asre not on the seme circle. To make it be effectively
a function with real modulus, it is necessary that two circles bisecting
the four circles passing through three critical points be orthogonal.

This is true in particular for the integral of section 1.6 defining the
flow inslide an equilateral triangle which was reduced to

n.-.f__dx__
the critical points are 1, J, 32, and infinity. A bisecting circle

passing through J, 32 admits as dlameter the degenerated circle con-
necting 1 with infinity.

With the elliptic function being decomposed into zeta functions and,
if multiple poles exist, into derivatives of zeta functions, the integra-
tion is immediate. To the simple poles correspond logarithms of theta
functions represented by source vortices. Doublets correspond to the
double poles, doublets of a high order to multiple poles.

A Tirst example corresponds to the addition formuls of 23.

93(V)
jFEn(EKV)][%n 2K(v + vlj]EK av = kasn?EKvl) in 95<v " Vl) + VZ5(V1)

Other examples will be given below.
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L4 Elliptic Integral of the Second Kind and
Flows Around Rectangles

Before transformation into integrals of elliptic functions, the
elliptic integrals mey be decomposed into integrals of three kinds.
The calculations are generally more tedlous than in the case of immedisate
transformation into elliptic functions, but the integrals of three kinds
have & direct advantage for many applications. The integral of the first
kind is connected with the elliptic functions and was studied in the sec-
ond chapter. The integrals of the second and of the third kind will be
studied.

The elliptic integral of the second kind is defined by

X 2.2
e1=f 2o kX ax
o) l-x :

According to the first chapter, it corresponds to the flow in the
nelghborhood of an open rectangular polygon (fig. 41). The calculation
of this integral is immedlate. It 1s sufficient to put

x = sn(u,k)
for finding
u
el(u,k) =d[‘ dn®(u,k)du
ol
The vertices at acute angles toward the flow correspond tc u = +K.
For u=K
x = sn(K,k) = 1
K .
e1(K,k) =f dn®(u,k)du = E(k)
o)

a value already introduced in 4.1, in the study of the derivative of the
zeta function.

The vertices at obtuse angles toward the flow correépond to
u = K + iK' =

For u =K + 1K'
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x = sn(K + iK') =IJ§-'

K+iK!* _
el(K + iK',k) = E(k) + f dn®(u,k)du
K
or, making the change of variable:

K+ iK' + iu!

e
I

dn(K + iK' + iu',k) = -k' sn(u',k')

dn2(K + iK' + iu',k) = 1 - dn2(u' k')

Consequently

E(x) + 1[K' (k') - B (k)]

The function el(u) is linked to the Zz function

el(K + iK',k)

1 u Eu
el(u,k) = — Zz[—\|+ =

One finds agein that for u = K, when Zz = 0, the value of el(u)
is E, and that for u =X + iK', when Zz = -ix, the value of el(u)
is

el(XK + 1K',k) == + £ + IK'E _m 4 i1(x' - E')
2K K

In the plane of the variable u, the fileld of el(u) differs from
the field of Z_-5(u) only by superposition of a uniform stream which

displaces the stagnation points to lead them to the zeros of dn u
(fig. L2).

Of more interest for the applicetions is the integral
X
f 1-x2 sy
o 1l - k2x2

whose representative field (fig. 43) is, according to the first chapter,
that of a flow around a rectangle.
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It is easy to normalize (fig. U4), by setting

s8in X

k = sin X X = ce———
o sin X,

whence follows the new form of the integral _

d[\Jsinzxo - sin®X ax

sin XO _

but it 1s more practical to reestablish the connection ﬁith the elliptic
functions by setting x = sn(u,k), and this transformetion gives to the
integral the form

2 2

u u .
f cnzd_u = f g'n_uj__k__ du
o o k

2
ﬁ% et(u) - i%— u

- 1 u B 2)11
= = D fe=) + [= -~ KT
2Kk 3(2K) (K k2
One of the vertices corresponds to u = K vhere Z5 = 0 and the

2
E - k'K
value of the integral is . The middle of the slde adjacent to
"‘Ez“* E

the origin corresponds to u = K + iK' where Z5 = -ix and the vealue
of the integral is

_dn_, (B ks _E- k% _ 4 E' - ok
2 K K2 K K2

In the plane of the variable u, the field of the new integral
agein differs from that of 2z only by a uniform stream (fig. 45), this

time leading the stagnation points to the vertices of the rectangle which
correspond to the zeros of cn u.

It 1s equally interesting to comstruct the field of snu in the
plane of the variable represented by the integral

Z5<%%,%> = 2§/£u [énzu - %Jdu

I
[

X
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This field is represented by figure 46.

In a general manner, the field of sn u 1in the plene of the elliptic
integral of the second kind, incressed by & quantity proportional to u,
is uniform at infinity and surrounds a rectangular polygon the forms of
which vary with the real proportionality factor.

4.5 Elliptic Integral of the Third Kind
The elliptic integral of the third kind is defined by

fo 1 ax
x—

© @ J(l - xe)(l - k2x2)

In contrast to the two preceding integrals, it depends on two parame-
ters: k and a.

Taking into considerstion the methods of integration epplied sbove,
it is useful to study the integrals of the third kind only in the cases
of direct significance for the applications. These latter correspond
almost elways to real values of « vwhich alone are considered here.

The position of « with respect to the eritical points: -1/k,

-1, 1, l/k determines the appearance of the rectangulsr polygon,
corresponding to the real values of o and limiting the representative
field which, in accordance with the first chapter, is that of a doublet
of the order 1/2.

Figure 47(a) corresponds to a value of o« lying between -1 and 1.

Pigure 4T7(b) corresponds to a value of o between 1 and l/k.

Figure 47(c) corresponds to a value of o larger than 1/k.

It is of no interest whatever to normelize here 1n defining the
field of a vortex. It is preferable to set

x = sn(u,k) a = sn(uo,k)

This transformation leads to the integral

u
jf du
o Snu - snuy

which can be easily represented in the plane of the varisble wu.
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For u, between -K and K (fig. 48(a)), the function to be inte-
grated presents & pole at u = uy in the nelghborhood of which it behaves
like

1 1
sn[uO + (u - uo)] -snu, cnu,dn uo(u - uo)
1

and consequently the integral behaves like o g In(u - ugy). Tt
1s represented by & source. It is real, like its derivative, for

- K<u<K &and for =K + iK' <u <K + 1K', It is purely imsginary
along the vertical lines of abscissas ~K and +K since its derivative
ls real and du is Imaginary on these stralght lines. The derivative
is zero for u = 1K' which corresponds to a stagnation point of the

stream.

For ug, lying between K and K + iK' (fig. %@(b)), the same
analysis defines the field of a vortex since cn u, 1s purely imaginary.

For u lying between -K + iK' and K + iK' (fig. 48(c)), the
field is again that of & source since cn ug dn uy 318 real.

In order to represent the elliptic function with the aid of zeta
functions, one must determlne all poles in a domain of variation of u
from 4K to u4iK'. These poles are the zeros of sn u - sn u,

! ug + 2iK! -u, + 2X -u, + 2K + 2iK'

(0] O

We have already calculsted the prinecipal part in the neighborhood

of u = ug
u =u
7 0
1 o 1 ~ <;'EK )
snu-~snu, onu, dn uo(u - uo) LK cn u, dn u,

Proceeding in the seme manner in the neighborhood of the three
other poles, one hsas

l{-Kc:nuodnu0 < >+Z< ) <u+u0> <u L ote
sn u -~ sn uy 3

The constant can be determined for u = u, + 2K
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I a dn
- Kenudnuo 2K enug dnug _ C\ >+Zj<<\ > Zl<1
8D U - SN Uy sn ug Ly

2o + 2(32) + ()

and the integration is immediate

fu ecnup dn Uy o qp QliKug 93< ) e2 EI'{)
o. snu-snuo u - Uy u+uo u,
(o) 9(—)93(—)
LK LK LK/ “\LK

[T ) ()

One reduces the elliptic integral of the third kind to the integrsals
of:

- 1 sn u

snau - Sn%.lo sneu - snzuo

Agreelng to introduce perasitic slngularities which compensate one
another, one has

1 _snu+snu0__ sn u Bnuo

= = +
Bn U - 8O Uy  gp?y - snauo sn2u - snauo snu - snau.o

We shell proceed inversely, deducing the two new integrals from
that which has Jjust been calculated

fu2snuocnuodnuodu_fucnuod.nuo d.u-:/’ucnuodnu.o au
o o

2 sn u+snu
snu - sn2uo sSn u - Sn u, o o

en ugy dn U, 1 Uy
" TEmu, T Z(ﬁ)

|
©
TN
&
R
o
S’
+
bt
3 1

Likewise
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arx

U 2¢cn U, dn ugy sn u U enu, dn Uy L U cn u, dn ug
JF 5 du =u[‘ B e —— du-er du
o sn“u - snEu0 o SR U -8R U o SR u+ 81 u,

but 1t is more comvenient, in order to avold the reduction of the thete
functions, to calculate this integral directly by meking the change of
veriable u =K -~ uy which leads to a rational integral in dn uy.

One can likewlse observe that the field of the function 1

differs fraom that of the function 1 only by the ratio of the
Bn u - 81 Ug

periods, and one cen thus reduce the two integrals to one another by the
formmlas of doubling of the periods.

4.6 Calculation of the Zeta Functions and
of Various Constants

The most convenient method of cealculation of the z;ta functions
utilizes the expansions in trigonometric series of the theta functions.

o 1 2
Z (-1)F q(r+2) (2r + 1)cos(2r + 1)nv
)

= )
8(v,q) zg:(_l)r q(r*-%)2sin(2r + 1l)nv
?

and the analogous formulas for 2Z;, Zo, 23., _

It can be equally convenient to dlrectly make use of the expansions
in trigonometric series. It is sufficient to start frcm expansions of
the theta functions into infinite products

In 65(v,q) = 1n 85(0,q) - zln[ﬁ (1 - g2+ )] a1 - ZHLAW)

(o)

()

S ln(l - qar+1e-21:w)

r=0

snzu - snauo
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© qz:m-l ezi:tv ® 2r+l -Qi:tv
Z = -2xi z + 2rni Z
3(v5a) 2r+l  2inv or+l  -2imv
l - q e - q [=]

In expanding, at least for the real values of v, such that

q&‘"' 1 e"':z:h‘:v has & modulus smaller than one:

Z3(v,q) - Bt ; Z (2r+l)s alsnv _ 5 4 Z Z (2r+l)e o-2isnv
r=0 g=1
= Ug Z B sin(2snv)
s=1 1 - q=°
Likewise
2,(v,q) = Z3(v+ ) Ve Z (- l) sin(25:tv)

For Z and 2Z; one must lsolate the poles

= 2s
Z(v,q) = % cot(nv) + 4x Z —2  _ sin(2snv)
g=l 1 - q_EB

© 2s
Z1(v,q) = -n tan(xv) + lx Z (-1)°® 2 sin(2snv)
g 1 - qQS

The expansions of the derivetives of the zete functions are deduced
from the expansions above, and for instance

az i 8
) luczlgm 2Kv - 'ﬁ] = 812 Z —23__ cos(2snv)
av 81 1 - qes

This defines E(q) for v =0

KE{-E]___i 8q®

o2 5=l 1 - g°8
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One may also utilize, for the calculation of E, the theta functions

and for v =20

dzs _ n=1
av ®
1+2>  (-1)°d"
n=1 _

2n° - 2
L+2 Z (-1)2g"
n=1

The decomposition of the elliptic functions into zeta functions

introduces _
Ch (O)Q.) = -_E-[G(V,q_ﬂ

dv v =0

_ This quantity may be calculated in varié&s ways, fEf instance
starting from the expression of sn u - :

8 lL)e (o)
sn u = 2K/ 2

65(—2"-"12)91(0)

Deriving
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1 _LG'(O 82(0)
~ 2K 983(0) elZo)

taking into account

2k . 2
< = 85 (o)

we shall find

8'(o) = ﬂel(o)62(0)93(o)

This formula specifies the expansion of the theta function into an
infinite product

8(v,q) = 8;(0)ex(0)65(0)sln “vllj; (2 - &)?

Finally, the principal constants may be calculated with the aid of
the following formulas

VZE - 6x(0) =1+ 235 @°

n=1

2
Vi = Voing = (o) _ _nm —
62(0) 1+ 2 EZ: q?

n=1

= 2
1+2)  (-1)2%
JE? = \Jcos @ = 85(0) _ n=¥w

65(0) 2
2 1+ 2 E g
n=1l

2

= 2
Z (_l)n+ln2qn
n=1

© I )
pre2 qna) L+ ST ()R
n=1

E _ ox2 93"(0) _ 1 93"(0) 1
2

1 - = = =
K2 85(0) 2924(0) 85(0)

n=1
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It will always be possible to assume in these formulaes X' > K

=7

and qge by interchanging eventually the roles of K and K'.

Moreover, the infinite products of the expressiéns of the theta
functions mey be reduced to series.

For instance _

o0 o]
f[] (1 - )| =2>_ in(1 - ¢2r)
r=1 r=1
o [s]
=-ZZlq2“
r=1 s=T °
o
= Z..l_ _a*
s=1 ® 1 - q

4,7 Second Integrals of Elliptic Functions

If one must again integrate the integrél of en elliptic funection, the
weighted sum of logarithms of thete functions and of zeta functions or of
derivatives of these latter, only the logarithms introduce new functions.

For the applications and especially for the numerical calculations it
may be sufficient to define these new functions by series. For instance
(-]
1 - qx+le2inv)(y . q2r+lg -2in
In[e5(v)] = 1n 65(o) +Zln( g )@ - )
=0 (1 2r+1)@
- Q

1n 65(o) > Z (ml)sl;,easinve_zsmﬂ

r=0 s=

n

in 83(0) + & zz: — 2 ein®env
8=1 (l - q

f[-}n 95 v)] av = v ln[65(o)}+ EZ 23)(1, _ sin ZSﬂv)

287

L]
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In & general menner, the complicated integrals pertalning to elliptic
functions may be calculated numerically by use of expansions in series.
The method does not make evident the singularities of the functions except
those which are situated on the contour of integration; they are most fre-
quently led back to the real axis and must be removed from the expansions
in serles.

5. VARIOUS APPLICATIONS

5.0 Ranges of Application

The present paper was written so as to permit understanding and
facilitate utilization of the studies of fluid mechanics for which we
introduced elliptic functions. We refer to these studies (1 to 5) which
form a group of applications.

The elliptic functions solve the problems of flows around obstacles
the contours of which are schematized by segments of straight lines and of
stream lines. They furnish the field of nonstationsry flow arcund plane
vanes in vibration.

The examples chosen below illustrate the possibilities of use.

5.1 ILaminar Profiles for Airplane Wings and Blade Grids

The problem is to define profiles along which the velocity varies
very slowly in order to avoid separation of the boundary layer and to
delay the appearance of shock waves at high speeds. The importance of
this problem is emphasized in several of our publications and in the work
done by my coworkers under my direction (6 to 15).

The airplane wing is a particuler case of a blade grid for an infinite
blade pitch. It is therefore sufficient to study the blade grid.

For the first schematization which will be corrected later om, we
assume that the velocity is rigorously constent on certain regions of the
profiles. The pressure is then equally constant for the isentropic poten-~
tiael flow, and the contour is that of a free Jet in equilibrium with an
inert space at constant pressure. In order to simplify the calculastions,
the connections between the sbove regions are assumed to be rectilinear.

A profile may thus be defined by a dihedron AB, AB' at the leading
edge, two stream lines BC and B'C', two segments CD, with C'D forming a
dihedron at the trailing edge (fig. 49). The iower surface of the profile,
convex near the leading edge and concave in the central region if the cam-
ber is great, normally admits a point of inflection I.
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We disregard the possibllities of application to flulds satisfying
a Judlciously chosen law of compressibility which result from a simple
modification of the integratlion beginning with the hodograph, and treat
only the flow of the incompressible fluld (3 and 10 to 15).

If F 1s the complex potential of the flow in the physical plane
where the complex variasble is 2z, we construct the hodograph ((F) = dz/dF
or rather the logarithmic hodogreph A = 1n§

Along the stream lines, the intenslty of the velocity is constant,
the modulus of ¢ and the real part of A are constants.

Along the segments of straight lines, the direction of the velocity
is constant, the argument of { and the imaginary part of A are constants.

The image of the profile in the plane of the hodograeph is therefore a
rectangulser polygon (fig. 50), the general appesrance of which can be easily
constructed from an gpproximate outline of the flow. _

The field F(A) is that of a source vortex with the image O of the
infinity upstream discharging into a sink vortex with the image O' of the
infinity downstream. 1In the case of a wing profile, this field is reduced
to the field of a doublet with circulation with the unique Ilmage of infin-
ity. It 1is not difficult to define as in 1.7, if one knows how to mske &

helf plane correspond to the interior of the rectangular polygon by a con- :“

formal transformation. —

Let us choose to define such a conformal transformation fF(A) by the
field of a doublet at N on C'D (fig. 51). The reduction of the elliptic
integrals shows that it is alwsys possible to choose the point N, the ori-
gin and the scale of the fleld in such s manner that the function assumes
the values -1 and 1 at B and B', 1/k and -l/k at C' and C.

Iet us thus assume f3, fp, f3 to be the values of f at A, the

image of the stegnation point, D +the image of the trailing edge, I the
image of the point of inflection at the lower surface of the profile; the
derivative dk/df then is determined by its singularities except for one
factor: o "~

an_ cte hyw T-%3
ae [ 2h - (f-fl)(f-fz)

According to figure 41, the constants satisfy the lnequalities

1<) <1 -

o < -1/k

-1/k < f3 < =1

e
L |
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and 1f one sets
f=snu f1 = 8n ug fo = sn(us + iK')
the function dA/du is elliptic:

(L+ken u)(sn u - £3)
(sn u - sn ul)fgn u - sn(uz + iK‘)]

The constant C, 1s real and positive because u 1is real along BA,
and contained between -K and u;, vhereas dk/du is real and positive.

g}
du

= —CO

It is convenient here to decompose the function which depends only
on sn u,

S 1 + %2
Co du snu=-snu; snu - snfup+ iK')

by replacing the parameter fz by the parsmeters o3 and ap Ilinked by
the condition that dA/du should be zero for k sn u = -1

1 = d,l + @2 _ C(,l + CL2 sn 112
1+ ksnuy l+k sn(uz + iK') 1+ k sn up 1+ 8n up

The function A(u) is the sum of integrals of the third kind and of
a linear function of wu.

Before proceeding with the calculation, it is suitable to remark that
extensive work would not be justified for a crude representation. A much
more significant profile may be obtalned for a continuous contour of a
hodogreph and close to the polygonal contour. It is possible to retain
two stream lines of the fleld of & source at A discharging into a sink
at D (fig. 52). The two branches at infinity in A, the image of the
stagnation point, must be separated from i so that the profile does
not have an angular point at the leading edge. The two straight lines BA,
B'A of the polygonal contour must therefore be separated i(m + € + €')
where € and €' designate arbltrary small angles fixing the deviation
between the hodograph of the schematlic profile and that of the desired
continuous profile, and presenting, in particular, a finite curvature at
the leading edge.

In the neighborhood of the point A, the derivative d%/du behaves
like
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an -alco - % Cy 1
du snou - 8n uj cn uy dn u; u - uy -

and the integral, except for a regular function, like

C
A~ _.._.—a'_l_.g__—ln(u - ul)
en uy dn uy )
When u exceeds the value u; by increasing vélues, the imaginsry
part of ln(u - ul) decreases by 1ix and that of A 1increases by

i(n + € + €'); consequently

€ + ¢!

1 Cq = (l + ——;f——)Cn.ul dn uy

Likewlse, in the neighborhood of the point D, the derivative dai/du
behaves like

an ~aoCq .k sn2u2 a2Co
du  snu - sn(u+ 1K')  cn us dn up u - up - 1K'

and the integral, except for a regular function, like

+a2 C, k s )
Aw o nauelnE;.-uz-iK']
cn up dn up - u
When u exceeds the value uy + iK' by increasing real variations,
ln(u - uy - iK') increases by +1wx, and if A denotes the edge angle of

the leading edge, A varies by -(1 + £ +ﬂ€')LA _

€ + €'\A cn up dn up

@200 = e (l +
n /ﬁ k sn2u2

According to the relationship between o3 and aé established
before

Co _enuy dnuy A en up dn up c
l_l_e;lr-e' l+ksnul Tfk(l+snu2)snu2 1

Hence the expression of the derivative
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en(up + 1K') anfu, + 1K')
sn u - sn(u2 + iK')

__.__kcl_. -
snu-snul

€ b|8

Replacing C; by its expression and integrating beginning with the
value Ag of A at B where u = -K, one obtains

e(u-ul>e <u-ul)
oSt I bk /) O\ kK
1+ £+ €L e(u.+ul\e (u+ul)
x
Nx /A 1k
e(u-uz-ff.K‘)GB( -ue-iK') -
~iqraaiis
Apl LK hx . | .,
X u + upy + 1K' u + up + iK!
91( )92(
Ly L

u+ K 2Kcnuld.nulxl-ksnul_Z(lj_l_)_z(u_l_> N
4K sn uq 1+ ksnuy 2K S\ax

u_l__K?Kcnuadnuaxl—snug_ 2)_232
4K sn up 1+ snup 2K S\2K

The second term is expressed wlith the aid of theta functions that
can be calculsted for values of the varlasble which are complex when u
varies from -K to K by real values. It is easy to obtain an expres-
sion which can be calculated more easily by first coming back to a single

theta function
e(u - ug = iK')e<u - up + iK')

ap

_Aan LK LK
ki 1 t
e<u+112+?_K+ iK,)e(u+u2+2K-iK_>
LK ‘ LK

and then decomposing the products of thete functions according to the
formulae of section 3.4

62<u—u2 k_I_l+c1n(u -u2)
A 4K ) 1 - cnlu ~ u)

-'J-f- 1ln

ofu + up 1+ dnfu + up)
81( Ly )k+l+cn(u+u2)
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K o ) - e —

The point B' corresponds to u = _
7\31-7\3=iﬂ+Kcnuldnull—ksnu;;__z(g_zi_)_lz(Bl__)_l_
1+ £+ €' sn uj l+ksnuy 2 2 D\zx

éKcnugd.nuzl-snue AZ('L_J.g) A Z(ug)

T sn Uus 1+ enup o 2K-él—1‘5

The real part of Agr - Ag defines — a.;bproxima‘oely for the modified

representation — the logarithm of the ratio of the meximum velocities on
the upper and lower surface of the profile.

The calculation of A(u) along the straight lines CA, C'A of the
hodograph 1s comparable. The varigble u varies by real values from
-K + 1K' to K + iK', and this time it is convenlent to make the trans-
formation of the theta functions containing wu,.

The calculations along the straight lines BC and B!'C' introduce
the thets functlons for complex values of the variable into the two
logarithms. It suffices to use the formulas of change of given axes at
the end of 3.1 for arriving at a formulas analogous to those used above. .

To plot the outline of the modified contour of the hodogra.ph s one
must use necessarily the theta functions for complex values of the variable,
but since the values of € and €' are small, the calculations converge
rather rapidly. - B ' -

One will begin with definlng the image of the field of figure 52 in
the plane of the variable u (fig. 53). _ . -

This image g(u) is that of a source at uy disch_;_.rging into a
sink at 1iX' + us with a field which follows the contouxr of the rectan-
gle -K, K, K+ iK', -K + iK',

The function g(u) 1is determined by the above singularities.

snu—snul

g(u) =1n
Bn u - sn(u2 +_iK')

Bn u - 2n uy

—_—
k sn Uo

=1n

sSsnu -
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Tf the field of the flow around the profile is not desired, it is
not necessary to calculate A(u) in the entire field of the hodograph.
The contour suffices for the integration of the profile. However, the
singularities must be correctly placed. For practical purposes, one must
start from approximations furnished by a freehand sketch or by electrical
analogy and then make corrections with the aid of the exact formules. It
is, besides, possible to differentiate the latter for corrections in order
to avold calculstion of the theta functions.

We do not teke up agein the caleulation of the integration of the
profile beginning with the hodograph vhich 1s set forth in several of the
papers cited as references. However, let us note that this calculation

leads to the use of the functions ex and e'x and that the logarithms

of the thets functions which appear in A are transformed into powers of
theta funetions.

5.2 Vibrations of a Swallow-Tall Wing

We have studied the flow around a delta wing in vibration (ref. 16) and
we intend here to extend the results to a plane, slender swallow-tail

wing (fig. 54).

We shall not resume the discussion of the approximations which per-
mit definition of the flow potential by the real part of

¢(§:X’T) =an(yo:X;T)f(C,yo)dyo

where x 1is the abscissa counted from the vertex, ¥, the algebraic

distance to the axis of symmetry on the wing, T the product of the time
and the velocity at infinity, Wn the normal displacement velocity of a
point of the wing in the course of the vibration, § =y + iz a complex
varisble formed with the ordinate y and the height 2z, measured normal
to the wing, from & point of the flow, f the complex potential of the
field of the plane flow of a source of the intensity 1 at a point Yy, on
the upper surface of a transverse section of the wing with the abscissa X,
discharging into a sink at the same point on the lower surface. The inte-
grel is extended to the entire section of the wing which depends on the
abscissa X. .

Between the vertex of the wing and the reentrant point of the
trailing edge, the calculation is identical with the one made for the
delta wing, and we plan, essentially, to define the function £(t,¥0)
in the transverse sections which intersect the trailing edge.
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Since the problem is linear, we shall distinguish the symmetficaiu
vibrations for which Wn 1s an even function of Yy, from the antisym~

metrical vibrations for which Wp 1is an odd function of yo. This per-

mits limiting the integration to & half wing, replacing the func=

tion f£({,y0) by £(¢,yo) + £({,-yo) for the symmetrical vibrations,
and by f£(¢,yo) - £({,-yo) for the antisymmetrical vibrations. In order
not to complicate the notation, the f function modified in this menner
wlll be represented by the same letter. _

Let us treat first the symmetrical problem and neglect, to begin
with, the influence of the vortex sheet which is shed by the trailing
edge. The field of the f functipn is that of two squrces at symmetrical
points of the upper surface discharging into two sinks at the same points,
but on the lower surface (fig. 55). The intensities are all equal to
unity. The condition of Joukowsky imposes the position of the stagnation
point at B, the image of the trailing edge.

= H
=

In accordance with a general method for the problems of flow about
two segments of straight lines, we shall carry ocut a conformasl transfor-
?ation defined by the field of circulation sbout the segments AB, A'B!

fig. 56)

E =1 sn(ul,:.—’)

where & and b are functlons of the abscissa x which are linear in
the particular case where the leading edge and the trailing edge are both
straight lines.

In order to avold uslng imsginary values of u; on the wing, we
shall make the change

i(Ki' - u) =u - Ky

The field ¢(u) is equally represented by the figure 56, but one
must interchange the equipotentials and the streem lines.

2
¢ = a dn(u,k) kK =1 - EE

In the plane of the variable u, the representative field of the
f function can be graphically constructed (fig. 57) with sufficilent _
precision to determine the general appearance and the singulerities. _
The rectangle ABOI = corresponds to the quarter of the right lower plane
of figure 56 where the f function admits as a singularity that of a
sink et M where u = ug.

v
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The analytical extension by symmetries defines the complementary
singulerities, and the f function is determined, except for one linear
function of u, corresponding to s uniform flow parallel to the real

axls, by
- 2K
2K
u - +
EE =- 1 Z( uo) - zCi__iﬁg + Cq
du 2Kt 2K 2K

The Joukowsky condition at the trailing edge imposes that df/du be
zero for u =X

o»ﬁ%@%}-z(%+§.)]+cl=%t_zl(§)+cl

and consequently

(g
nf = lnw - %Zl(%) + KCO
o(—=)
The constant C, may be defined by

_ 3 %o, 1K' (uo)
CO—iK+:l'(K ZlEK

s0 that f will be zero when ¢ is infinite and u = iK'.
However, this purely imaginary value may be neglected.

The problem is therefore solved by the parametric definition of the
function f£(t) with the aid of f£(u) and of ¢(u).

Iet us now study the influence of the vortex sheet originating at
the trailling edge.

Because of the linear character of the. problem, the field induced
by the vortices may be superimposed on the field calculated above under
the condition that this induced field is not aeltered by the velocity which
is normal to the wing. This reservation will be respected if the fleld
induced by each pair of symmetrical vortlices of the sheet encloses the
meen position of the wing (fig. 58) and satisfies the Joukowsky condition
at the trailing edge.
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The fleld of these symmetricel vortices msy be transposed in the
plane of the varisble u (fig. 59) where it appears like the fileld of
vortlices with a uniform flow, parallel to the reel axils, placing the
stagnation point at the image B of the tralling edge. The corresponding
function fl(u) 1s determined by its singularities and their images of

the anelytic continuation by symmetry. For a vortex with a circulatlon
equal to one

dfq i (u + ig u - ﬂx) N
& WK [2 X ) 2( 2K "1

The stagnation point is et B if d4fy/du is zero for u = K.

=+ io - _x o o
0 = g B() * ™ = me alEeY) fE@ R

where the logarithmic derivatives of the relations estéblished at the
end of 3.1 have been utllized for the calculation of the Z5 function

for a purely imaginary argument.

To faclilitate the notation, the Z; function wili-be represented
'by -

the f; function 1s then defined by -

The constant D, can be determined by the condition that £5 should
be zero for infinite ¢, that is, for u = iK'.

Nevertheless, 1t appears as purely imasginary and may be neglected.

Tne ordinate Yy, of the vortex center is

& dn(K + iK' - ia,k)

i

Yo

b sn(a,k') = b sn'a
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The equilibrium of pressures on both sides of the vortex sheet
- requires that the potential difference be invarisble along a vortex at
a point which is displaced at the speed of the flow.

This variation of potential, equal to the circulation on a contour
starting from .a point of the sheet and coming back to it, avoiding the
wing and the sheet, will be the welghted sum of the variations of the
f and f; functions.

When such a contour does not enclose a vortex, the theta functions
are uniform and the variation of u 1is 2K. Consequently, the variations
of the functions are, respectively

If the image of the contour in the pleme of the varlable u encloses
the vortex = ln[ea(u ~ a,)], it is convenient to add 1 to Af..
T oK 1

The potentisl is the real part of

K
o = f Wn(uo,x,T)f (u,uy, k)akesn Uy en ug dug +
)

K
f 7£1(w,0,k)b en o dn a do
)

if 9 dy, is the intensity of the vortex of the magnitude
dyo = b cn o dn o da.

The circulastion or variation of the potential on the above contour
is

K
r =-§f Wn(uo,x,T)Zl(%akzsn uy en ug dug -
o

1 K ixX
- —f 7Zl'—9‘— +’t—a’-bcnq,dna,dor,+f b cn o dn o do
Yo 2K! K Dy
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where a, 1s the Imsge of the point — with the ordinate Yo — where the
vortex sheet Iintersects the contour.

The condltion of constancy of the circulation for a point entrained
by the flow is written _ -

_gar or or
0—&-1: -a-;_-'i'a—x _

and, consequently, I' has the form I'(x - T,yo).

The two first integrals do not depend on y, and the latter may be

written
f i
74y,
¥y o)

(o)

Consequently

= ‘a%;ﬁ‘(x = T;YO)]

This relation utilizes completely the law of the variation of T
with y, and it suffices to retain the expression of ' for y, =D

in order to eliminete the last integral

K
r(x - T,b) =-§-f Wn(uo,x,'r)Zl(z—%)akesn u, cn u, du, +
o i

%j;b ?%;[I'(x - 7,5)) [Z:L(%) * %ﬂdy

This integro-differentiasl equation in I' which can, besides, be
transformed into an integral equation by sn inftegration by perts of the
last integral, is not very manageable in the general case, but for the
applications usually undertaken, the vibrations are harmonic, and the
solution I' is likewise harmonic 1f the period of establishment of the
motion 1s neglected. One agrees to retaln only the real parts

lwT )
Wp = Wo(Y,X)e = Wo[a dn .uo,x]ein I = Po(y)eiw(T x)

and the integral equation assumes the form
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iox pK 5
I'o('b) = -2% f o(uo,x)Zl(ZK)ak sn u, cn uy du, +

O

s & E () + g

where
¥y =D sn' a

and a, b, k2, K, K' eare known functions of. x, the two first ones
linear for rectilinear leading and treiling edges.

If the last integral is integrated by parts, it takes the form

;:J;[E:o(b sn!' o) - I‘o(b)] [Zl'(5%6-> + %]]I: -
f [I' (b sn' o) = T (b):ldm[ 2K da.

The integrated part is zero because Zq' 1is zero for ao =0 and
behaves like —2K71- in the neighborhood of o - K' whereas, if there

exists no singularity of the wing contour rendering the derivative of I‘
infinite, the first term behaves like

dry (b en' a),
\

ar
- -K') = —21b cen! o dn' a(K' -
b ™ =g b a o «)

en' a tends toward zero when o tends toward K' and the product of
the two terms tends toward zero. The argument shows, moreover, that the
integrel which remains i1s finite.

If one notes, on the other hand, that
_i_ 1 o4 _Q_ 1fa - K' - iK
£l (2#) da,[z'5 ('—T—H

2K' an'?(g - K' - iK) - 2E!

2
o2k SRS _ ope
ent

L]
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the integral equation takes the form

peiak PK 2
Po(b) = - . Wo(ugsX)Zq ( )ak sn u, en ug dug -

Al

K! o 2
f [I‘ (b sna.)-I‘o(b)] -EkK'M_gEI.,.%da
[e) ° Cn'gq,

This equation may be differentlated in order to furnish ———(b) a8

a function of the values of I;, from O to b. It permits therefore
the construction of T (b) by graphic integration for a form of harmonie

vibretion glven by Wn(uo,x) For practical purposes, it is more con-
venient to retain the equatlion in its first form.

For the transverse cross sectlon of the abscissa xg passing through
the point upstream from the treiling edge and constituting the limit of
the delta upstream gilving rise to an easy calculation, the formula fur-
nishes TI(0) for decomposed elliptic functions and zeTa functions cor-
responding to k = 1. Besides, the quantity r(0) is in that case the
clrculation for a contour passing through the axis of the delta wing.
Starting from this initial value, the value I'(b) may be calculated step
by step in successlive cross sections the abscissa x of which variles
from x5 up to the absclissa of the wing tips. If an effect I'(v) 1is

known from O to b(x) in a cross section of the abscissa x, the curve
may be extrapolated by a segment of a straight line of undetermined slope
ar/db. The integral equetion, written in the cross section x + dx vhere
5x 1s a finite variation 1s then an equation of the first degree in d4r/db.
The procedure, equivalent to the differentiation of the integral equation,
has the advantage of avolding the calculetion of the derivetives of the
elliptic functions and of the zeta functions which depend on the abscissa X
by the intermedlary of thelr modulus k2.

When I'(b) and its derivative dI'/db are calculated, the potential
is completely determlned by the distribution of intensity of the circula-
tion 7 linked to dI/db. The calculation of the aerodynamic forces may
then be carried out as for the delta wing.

If one has to deal with antisymmetrical vibrations, the calculation
is parallel and it will be sufficient in this case to perform again the
determination of the functions f and £f;.

Figure 60 represents the field of the function Z£({), and figure 61
its imege in the plane of the variable u corresponding to the function £(u)
which is deflned by its singularities, that is, that of g sink at M and
that of a vortex with the Image I of infinity.
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N e B e ]| N

U - uo u + uo 8 u + iK' ) u + iK'
0 5] 1
5( K ( BK ) (WK ) ( LK )
rsn(u - 9o
=-21n s - Ap(u) + Co + Cqu

- - + +
c:n(u uo) du(u uo) cn ha Yo du ha Yo
2 1 2 2

1
2 - 21 +
sn u) sn i—ug
2
The constants A and C are to be determined in such a manner that
stagnetion points exist at B and O in the plane of the variable u.

let us study likewlse the function fl(l_;) characterizing the vortex
sheet (fig. 62), constructing its image in the plane of the variasble u
(fig. 63).

e(u- iK' + i“)el u- iK' + 10,) e(u - iK')el(u - iK*

i LK LK Ly Ly
f.==1n +iB 1n +D.+Dqu
17 2x u+iK'-ia,)e (u+iK'-ia.) e(u+iK‘)e (u+:LK') or "l
% N\ Ix ik /N TIx
Sn,u-K—iK'+icL
=.2-5;t-ln 2 + Bp(u) + D, + Dyu
et W= K - iK' - ig
2
,u-K-iK'+ia,) ,(u-K-iK'+icr.>
df1=3_°n( ) an 5
du by ; ,
sn,(u-K-iK'-&-ch)
2
Cny(u—K-iK'—ia.)dn.(u-K-iK'-icx,)
2
'i— 2 +Bdnu+Dl

o sni(u - K - IK' - m)



ol - NACA T 1435

The constants B and D7 are to be determined in such a manner
that df;/du is zero at B and O.

Translated by Mary L. Mahler : ] . -
Netlonal Advisory Committee ) '
for Aeronsutics
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Figure 12(c).

Figure 12(b).

Figure 12(d).

99



NACA ™ 1435

F(z)
Figure 13.
o’ E 3 o’
~ ; o 4 b
“\ MV \Faé)
~ - -
g\ - - - -
J :’ - T “
c’ B L

Figure 16(a).

rot
I

X=X
/A 1

Figure 16(b).




NACA ™ 1435 101

2iK
LY
~ 1T T 7 p
~. \ / e
.~ .
~ P
~ LTI
- /7,
- SN ZA T~
P ~
'
- / e
P2
~
\\ o /”
~f XN
@ YN A
- N,
ey ~~
” ~,
rd 4 N\ ~
- i \ N
i L L L1 1
-K K
sS04

\ /
A4, 7
A /.
Sl A
-E=% K-
7 /’, *;\\\\\ y
£ 2 Y
]
7 HETR!
N,
[ 7 HHE
-K K

cnu

Figure 19(b). Figure 19(c).



102 .

- — =

K -
1n[snu) K

In [En u]_ . K

Figure 21(a). Figure Zg(b) .

ln- [dnz_:,] . .
Figure 21(¢). = — -

-t

f



NACA TM 1435

2iK’

\ 7/.//‘{‘ ) \‘\\\"\*"
TT
SV
\AD o
:'-://'A“@\E\}?‘?
HH

2
e

-K
2 {1n(snw]
du

Figure 22(a).

~ L T3
b IO [
NS ), ) Y —
. A
L)

MW ~
/¢ 7 \
P QA
i Q\

e
y r~
- L
= A
1% AL S
N/ - I~
AT 7/ k- K~

LL"' |‘l|ll

i [ln (cn u) ]
du

Ll 1

< [1n(dnw)]
du

-K

Figure 22(b). Figure 22(c).

103



104

Figure 24(a).

Figure 25(a).
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